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“If you think you understand quantum mechanics, you don’t understand quantum

mechanics.”

commonly attributed to Richard Feynman
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Chapter 1

Introduction

1.1 Quantum Information

Similarly to the way in which information is represented as a bit in classical com-

puting, quantum information can be represented as a quantum bit or qubit [1].

The interesting and useful property of this qubit is that it can be utilised to rep-

resent a number of different states due to the superposition behaviour found in

quantum mechanics. For example, if we have two quantum states |0〉 and |1〉 these

states can be used to represent information and also form a superposition [? ].

|ψ〉 = α |0〉+ β |1〉 (1.1)

Where α and β are complex co-efficents of the basis states, which cannot be

measured directly. However, we can measure the probability associated with the

system being in one of the states |0〉 and |1〉 through the modulus squared of our

co-efficients. The sum of these co-efficients |α|2 + |β|2 must therefore be equal to

one due to the nature of probability, which forms the normalisation condition. This

superposition means that information can be represented as a vector in Hilbert

space on a Bloch sphere as shown in figure (1.1).

Additionally, if we assemble several qubits consisting of similar |0〉 and |1〉 rep-

resentations of state we can form new states from kronecker products because of

this vector representation. Thus a state of two qubits will consist of a superposi-

tion four states with four complex co-effecients associated with each state. This

1
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Figure 1.1: Bloch sphere representation of a quantum bit [2]

property means that for N qubits there will be 2N possible complex values which

can be used to represent information, which is a very desirable advantage over

classical information [3].

However, chosing a system that can both represent and utilise these qubits is a

difficult task which will be examined in the next subsection.

1.2 Physical Representation of Qubits

Quantum bits can be represented through a wide range of quantum systems sys-

tems ranging from ion-traps [4], optical implementations [5], nuclear magnetic

resonance [6], all of which have their own individual strengths and weakness.

One possible implementation however has a great deal of promise in the form

of the spin of an electron trapped in a semiconductor quantum dot as such a

technology could utilise the advancements made in solid state physics that have

greatly contributed to the current digital era [7].
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1.3 Quantum Dots

A quantum dot is a portion of matter which can confine a charge quanta within a

three dimensional box through electrostatic potentials [1]. Typically this kind of

device is implemented with a semiconductor material which confines an electron

into a particular area of space. The spin state or the energy level of the electron

can then be used to form a qubit using two or more states and then be accessed

through a range of methods [8]. For this project, the spin state of the electron was

chosen as the basis for the qubits, as there are only two possible states due to the

properties of the particle, and the semiconductor material chosen was silicon-29

as the nuclei also only have half-spin states.

This system was chosen because there is great potential for computational use of

qubits in this fahsion, with a great gate system [9], and such a system has been

shown to be initialisable into a state using ultra-fast optical pulses [10], fufilling a

requirement of the DiVincenzo checklist [11].

1.4 Decoherence

Currently, the primary problem with all implementations of quantum information

is the decoherence problem [7], which causes the information in a system to be

obscured by interaction with its enviroment. Thus, decoherence forms part of the

DiVincenzo checklist for a physical implementation of a quantum computer and

as such is an area of high interest in quantum information research [11].

Because of this, a consideration of this project was the sources of decoherence for

the electron qubit system as it was hoped that modeling the interactions responsi-

ble would lead to further insight and help identify ways to minimise this problem.

For the quantum dot electron spin qubit, the primary source of decoherence will

be the spin interaction between the electron and the nuclei due to fermi contact

[12–14], thus this will be one of the primary focuses of the simulation.

Another possible interaction which could affect decoherence of the system is the

coupling of spins with an external magnetic field, thus this interaction will also be

considered.



Chapter 2

Methods

2.1 Simple Spin Chain

The first part of the project concerns a simple spin chain. This was used to inves-

tigate the basics of spin interaction in order to progress further. This would frame

the way in which the interactions would occur in the later methods, investigate

how the system’s evolution in time could be modeled and the error associated with

this modeling.

2.1.1 Concept

The simple spin chain consists of a number of identical theoretical spins, N, which

are able to interact with only their nearest neighbour. The spins can have two

possible states, up and down and each interaction is governed by a constant J,

which is the specific exchange interaction co-efficient.

In order to find the state of the system at a later time, the time dependent

schrodinger equation TDSE is employed [15].

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 (2.1)

The hamiltonian for this system is:

4
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Ĥ =
N∑

i,j=1

JijSi · Sj (2.2)

This hamiltonian is time-independant and so will be relatively easy to solve. In

the case of the simple spin chain, spins can only interact with their neighbour.

Hence:

Sk · Sk+1 = 1 k = { 1 . . . N − 1 }
Sk · Sk−1 = 1 k = { 2 . . . N }

And all other products are zero

(2.3)

2.1.2 Basis and Initial Conditions

The wavefunction of the system at a specific time can be expressed using a basis

representing the possible states of the system φi and an associated complex co-

effcient Ci representing the probability amplitude of each basis state.

|ψ〉 =
N∑
i=1

Ci(t) |φi〉 (2.4)

Choosing the basis for the system will determine the matrix formulation of the

hamiltonian. For this simple spin chain a similarly simple basis was chosen con-

sisting of N possible states, each with one spin up state and N − 1 spin down

states. This was chosen so that each basis can be represented in a vector form

consisting of one 1 value and N − 1 0 values.

The initial conditions for the system can then be chosen through setting the initial

values of C(t) at t = 0, such that the system can be initialised in a particular state

or a superposition of states.

For N = 2 the basis set consists of:

|01〉 =

(
0

1

)
|10〉 =

(
1

0

)
(2.5)

Thus the hamiltonian for N = 2 is:
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Ĥ =

(
0 J21

J12 0

)
(2.6)

And the basis set for N = 3 is:

|001〉 =


0

0

1

 ; |010〉 =


0

1

0

 ; |100〉 =


1

0

0

 (2.7)

and the hamiltonian for N = 3 is:

Ĥ =


0 J21 0

J12 0 J32

0 J23 0

 (2.8)

and so on for larger values of N.

For the simple spin chain, every value of J was set to be equal such that each

interaction was of equal magnitude for simplicity. This value was set as 0.04 in

the program as this value produced aesthetically pleasing results.

Additionally, a single value of J unique to each coupling was tested, as it was

advised that this value particular would result in periodic oscillations in probability

by the project supervisor. This value was given by:

Ji,i+1 = J0 ×
√
i(N − i) (2.9)

Where i refers to an index in the hamiltonian similar to those displayed earlier

and and J0 is a constant.

2.1.3 Iterative integration of TDSE

In order to solve the Time Dependant Schrodinger Equation with our basis

i~
N∑
i=1

∂Ci(t)

∂t
|φi〉 =

N∑
i=1

Ci(t)Ĥ |φi〉 (2.10)
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We multiply through by another basis state braφj

i~
N∑
i=1

∂Ci(t)

∂t
〈φj|φi〉 =

N∑
i=1

Ci(t) 〈φj|Ĥ|φi〉 (2.11)

But 〈φj|φi〉 = δij, which is the kronecker delta function, for which:

δij =

{
0, if i 6= j

1, if i = j,
(2.12)

Therefore we arrive at:

~
∂Cj(t)

∂t
=

N∑
i=1

Ci(t)Ĥij (2.13)

We can then employ a simple numeric approximation of partial differential

∂Ci(t)

∂t
≈ Cj(t+ ∆t)− Cj

∆t
(2.14)

Thus we find our approximate equation of motion for the state j:

Cj(t+ ∆t) = Cj(t) +
∆t

i~

N∑
i=1

Ci(t)Ĥij (2.15)

By iterating this equation over time, we can find the associated probability am-

plitudes Cj of the basis states.

2.1.4 Measuring Error

Due to the iterative nature of this method, there will be some error after a number

of timesteps. This error is dependant both on the size of ∆t and the machine

precision being used in iteration. Therefore in order to minimise error a small

value of ∆t must be chosen as well as a good level of precision. There are some

limits on ∆t, which must be large enough for iterations of the equation of motion

and so
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In the program,
∆t

i~
was saved as a single variable which was set to be equal to

2×10−2i for the simple spin chain. The variable precision was set to IEEE floating

double with 15 digits of precision in the mantissa and an exponent between the

ranges of 300 and -300. As J ×∆t

~
> 10−15, there should be no problems here and

the program should iterate correctly.

The resultant error can be measured with
N∑
i=1

|Ci|2 as for the normalised wave-

function this value should be equal to 1 at all times. Any deviation from this value

will be a result of error from these two sources and hence the effect of error on

the results of the program can be measured by recording this value. As such this

value was recorded to a file at each time step so that the error at each time step

can be measured.

2.2 Hyperfine interaction

The next stage after the simple spin chain was to consider a basic physical system

consisting of an electron and several nuclei. For physical data, silicon-29 was

selected as it has a half spin, similar to the electron. Data for the physical constants

in this interaction was taken from Klauser ’s PhD Thesis [13].

2.2.1 Basis and Initial Conditions

For this case, the basis was defined using the individual spin state of each particle

in the system. For a single qubit this was defined as:

|↑〉 = |0〉 =

(
1

0

)
; |↓〉 = |1〉 =

(
0

1

)
(2.16)

For multiple qubits, the basis was defined through kronecker products of the qubit

states. For example:
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|↑↓〉 = |01〉 = |0〉 ⊗ |1〉 =

(
0

1

)
⊗

(
1

0

)
=


0

0

1

0

 (2.17)

In order to make clear which spin in the ket is the electron, future states of this

system will be written as |⇑; ↑↓ . . .〉, where the double arrow signifies the spin state

of the electron. This basis will allow our hamiltonian to be composed of pauli spin

matrices, which for this basis of spin 1/2 particles are defined as [? ]:

σ̂x =

(
0 1

1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0

0 −1

)
(2.18)

Additionally we will need to consider the two dimensional identity matrix 1 defined

as:

1 =

(
1 0

0 1

)
(2.19)

The pauli spin matrices can be related to the spin vector of a particle in the solid

state physics convention through

~S =
1

2
~σ =

1

2
(σx~ı+ σy~+ σz~k) (2.20)

This relation will allow the expression of spin in our hyperfine hamiltonian for our

basis.

2.2.2 Hyperfine Hamiltonian

If we neglect the interactions of the nuclei with each other for simplicity, the

hamiltonian of consists fermi contact of the electron with nuclear spins N in a

periodic lattice defined as [13]:

Ĥ = ~S · ~h; ~h =
N∑
l=1

Al
~Il; Al = Aν0|F (~rl)|2 (2.21)
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Where the Ŝ is the electron spin state vector, ~Il is the spin state vector of a

particular nucleus l, ν0 refers to the primitive lattice size, |F (~rl)|2 to the modulus

squared of the periodic Bloch function and hyperfine constant A is defined as:

A =
4µ0

3
gµNµB|u0|2 (2.22)

Where |u0|2 is dependant on the nuclei and all other terms refer to physical con-

stants defined in the list of physical constants.

Because the ν0|F (~rl)|2 the term of Al in (2.21) relates to the positioning of nuclei to

the effective potential experienced by the nuclei, this can be simplified initially by

assuming that all nuclei have the same magnitude of interaction with the electron.

We can therefore assume that Al = A for all l. Our hamiltonian therefore becomes:

Ĥ = ~S ·
N∑
l=1

A~Il (2.23)

Using our relation for spin to the pauli matrices (2.20), we obtain a matrix repre-

sentation for the hamiltonian in terms of our basis:

Ĥ =
1

2
~σe ·

N∑
l=1

1

2
A~σl =

A

4
(~σe⊗~σ1⊗N

1+1⊗~σe⊗~σ2⊗N−1
1+ . . .+⊗N

1⊗~σe⊗~σN)

(2.24)

For the case of N = 1

Ĥ =
A

4
(σxe ⊗ σx1 + σye ⊗ σy1 + σze ⊗ σz1) (2.25)

σxe ⊗ σx1 =

(
0 1

1 0

)
⊗

(
0 1

1 0

)
=


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (2.26)
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σye ⊗ σy1 =

(
0 −i
i 0

)
⊗

(
0 −i
i 0

)
=


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 (2.27)

σze ⊗ σz1

(
1 0

0 −1

)
⊗

(
1 0

0 −1

)
=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (2.28)

So:

Ĥ =
A

4


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

 (2.29)

If we are to run the simulation for varying values of N, this procedure will need to

be automated in the simulation depending on N.

2.2.3 Eigenvalues

As the pauli matrices are diagonalisable, so are their tensor products [1]. We can

therefore find the eigenvalues of our hamiltonian through the diagonalisation of

our matrix. This would be useful when deciding upon initial conditions for the

system as if the initial conditions are equal to the eigenvalues there should be

no change in the basis co-efficients with time, meaning that we should expect no

change in basis state co-efficients upon iterating our equation with time.

2.2.4 Fidelity

One important measure of the effect of interactions with the time evolution of the

system is through the use of fidelity. Fidelity is defined as:
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Fidelity = | 〈initialstate|ψ〉 |2 (2.30)

Fidelity is therefore a measure of the probability that a system will be found in

it’s initial state at a specific time, so by measuring fidelity in the simulation we

will gain insight into how the system changes from its initial conditions.

2.2.5 Physical Parameters

Most of the parameters in the fermi contact hyperfine hamiltonian are physical

constants, however the hyperfine constant itself is material dependant because of

the |u0|2 term. Fortunately in [13] the value of A for silicon-29 is listed as 0.1µeV

and this value was implemented into the program.

2.3 Magnetic Field

The next stage of the project concerned the interaction of the spins with an ex-

ternal magnetic field.

2.3.1 Magnetic Hamiltonian

In general the magnetic field coupling with a dipole has a hamiltonian of [15]:

ĤB = −~µ · ~B (2.31)

Where µ is the vector dipole moment of the particle and ~B is the magnetic field

vector. This part will therefore have two componets, one with the electron coupling

with the field HBe and with the nuclei HBI

ĤB = ĤBe + ĤBI = −~µe · ~B −
N∑
i=1

~µIi · ~B (2.32)

Considering the electron spin component and assuming ~B only in the z dimension

we can use the z component of electron magnetic moment:
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µze = −geµBSz (2.33)

For which the ~S spin vector can be related to our pauli matrices as in (2.20).

Hence for the electron:

ĤBe =
1

2
geµBBzσz (2.34)

So the matrix form of the electron for our basis becomes:

ĤBe =
1

2
geµBBzσz ⊗N

1 (2.35)

For N = 1

ĤBe =
1

2
geµBBz

(
1 0

0 −1

)
⊗

(
1 0

0 1

)
=

1

2
geµBBz


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 (2.36)

Similarly, considering the magnetic field coupling with the nuclei in the z dimen-

sion.

µzI = −µISz (2.37)

So similarly for N = 1:

ĤBe =
1

2
µIBz

(
1 0

0 1

)
⊗

(
1 0

0 −1

)
=

1

2
µIBz


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 (2.38)
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2.3.2 Physical Parameters

For the magnetic hamiltonian most parameters are universal physical constants,

however the µI is material dependant. The value used for this parameter was

the one given in Klauser’s PhD thesis [13] for silicon-29, which is given as a ratio

compared to the nuclear magneton and as such this value had to be converted to

an energy unit if it was to be used in the program.

Due to the nature of the scale of the simulation it was decided that the physical

parameters should also be small in the program to prevent numerical error and

excessive use of mantissas. As such the energy of the hamiltonian generated by the

program is all in micro-electronvolt units and the time outputted by the program

is in picoseconds. As such all other physical parameters are similarly adjusted in

order to be used by the program.

2.3.3 Timescale of interaction

An important aspect of checking the accuracy of the results obtained was through

use of a measure of the timescale over which the interations were expected to take

place. This timescale was approximated as:

∆τ =
~
J

(2.39)

Where J is the generic coupling of one state to another. So for example for the

hyperfine hamiltonian this value would be:

∆τhf =
4~
A

(2.40)

and for the magnetic-nuclei and magnetic-electron couplings:

∆τBI =
2~
µIBz

; ∆τBe =
2~

geµBBz

(2.41)

Thus for our simulated silicon-29 system we can expect these time-scale values to

be:
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∆τhf =
4× 4.135667516× 103µeV · ps

0.1µeV
≈ 1.6× 105ps (2.42)

∆τBI =
2× 4.135667516× 103µJ · ps× 1.60217657× 10−19

−0.5553× 5.05078324× 10−21µJṪ−1 ×Bz

≈ −5× 105

Bz

ps

(2.43)

∆τBe =
2× 4.135667516× 103µJ · ps× 1.60217657× 10−19

−2.0023193043622× 9.27400968× 10−18µJṪ−1 ×Bz

≈ −0.75× 102

Bz

ps

(2.44)

So at around 0.001T the hyperfine and magnetic electron interaction will be of

approximately equal strength, while the hyperfine and magnetic nuclei interaction

will be around equal strength at around 0.5T . These values will be compared to

results from the program to verify the self-consistency of the results.

2.4 One dimensional lattice

So far the distribution and location of the nuclei have not been considered and

have instead been assumed to located where their interaction with the electron

is of equal strength. However, this is non-physical so some improvement was

made by considering a one dimensional periodic lattice. There were two more

considerations that were made in this regard, the position of the spins and the

strength of interaction as a result of their position.

2.4.1 Hyperfine interaction modulated in space

For the purposes of this model, it was decided that the hyperfine interaction

strength should be a modelled as a Gaussian function as this was sufficiently simi-

lar to the probability distribution of an electron in a quantum dot. This Gaussian

was centered at zero, where the electron’s highest probability of occupation was

assumed to be. The general form of the Gaussian function is:
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f(x) = ae−
(x−b)2

2c2 (2.45)

Where a determines the height of the peak of the function, b determines the center

of the function and c determines then width of the bell curve. Hence for the model

interaction:

a = 1, b = 0, c = 1 (2.46)

Thus the hyperfine interaction hamiltonian becomes:

Ĥ =
1

2
~σe ⊗

N∑
l=1

1

2
A~σle

−xi
2

2 (2.47)

2.4.2 Distribution of Spins

Several different distributions of spin were tested which were switched between

within the program. Due to time contraints only two distributions were tested

however on the two nuclei system, placing the nuclei at positions equal to the

positive and negative standard deviation c and with the nuclei at half of these

values.

2.5 Non-iterative Solution

Using the diagonalisation of the hamiltonian it is possible to find the state of the

system at any time without needed to iterate in time steps. This involves solving

the schrodinger equation exactly and then performing a basis rotation so that the

state of the system can be found at any time.

2.5.1 General Solution to TDSE

From our wavefunction basis:
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|ψ〉 =
N∑
i=1

Di(t) |φi〉 (2.48)

If we use a basis comprised of the set of eigenvectors {ϕi, i = 1 . . . N }, then by

the property Ĥ |ϕ〉 = εi |φi〉, the right hand side of the TDSE becomes:

Ĥ |ψ〉 =
N∑
i=1

Di(t)Ĥ |ψ〉 =
N∑
i=1

Di(t)εi |φi〉 (2.49)

So the TDSE becomes:

i~
∂

∂t
(

N∑
i=1

Di |ϕi〉) =
N∑
i=1

Di(t)εi |ϕi〉 (2.50)

If we introduce a time dependence operator Û such that:

|ψ(t)〉 = Û |ψ(t = 0)〉 (2.51)

The TDSE is clearly solved if the value of U is:

Û = e
−iεit

~ (2.52)

So the wavefunction at any time can be found by:

|ψ〉 =
N∑
i=1

Di(t = 0)e
−iεit

~ |φi(t = 0)〉 (2.53)

Thus we have our wavefunction at any time as a function of t, which can be

found easily from the eigenstates of our hamiltonian. The difficulty is that this

eigenvector basis is different to our information basis, so in order to establish

meaningful initial conditions we will need to perform a basis rotation.
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2.5.2 Change of basis

In order to establish meaningful initial conditions we perform a basis rotation by

first considering the two basis:

|ψ〉 =
N∑
k=1

Ck(t) |φk〉 (2.54)

|ψ〉 =
N∑
i=1

Di(t) |ϕi〉 (2.55)

So:

N∑
i=1

Di(t) |ϕi〉 =
N∑
k=1

Ck(t) |φk〉 (2.56)

Multiplying both sides by 〈ϕj|, the j-th eigenvector gives:

〈ϕj|
N∑
i=1

Di(t = 0)|ϕi〉 = 〈ϕj|
N∑
k=1

Ck(t = 0)|φk〉 (2.57)

The left hand side can be re-arranged such that:

N∑
i=1

Di(t = 0) 〈ϕj|ϕi〉 =
N∑
i=1

Di(t = 0)δij (2.58)

And δij is zero unless i = j, thus:

Dj(t = 0) =
N∑
k=1

Ck(t = 0) 〈ϕj|φk〉 (2.59)

Thus we have a relation to rotate our initial conditions from one basis to another.

This relation was implemented into the program such that the initial conditions

could be easily set.
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1 Initialise the basis
2 Generate the hamiltonian for the system
3 Find the eigenstates of the hamiltonian through diagonalisation
4 Solve the TDSE for a certain time
5 Find the fidelity of the state at that time
6 Determine and record the timescale of interaction

Table 2.1: Table of program specifications

2.6 Implementation

The simulation was implemented in fortran 90, details of which are listen in A.

The basic specification for the program was that it needed to:

All code was self written, although some usage was made of common linear algebra

libaries, however there were some unique implementation challenges that needed

to be overcome. The following details some of the subroutines developed for this

project.

2.6.1 Scalable Hamiltonians

For ease in running the simulations it was required to be able to alter the size of the

hamiltonians with the number of nuclei. For this a subroutine which performed

kronecker products on the pauli matrices as described in (2.24). Routines were

developed for the computation of both magnetic and hyperfine hamiltonians from

Pauli matrices which are detailed in Appendix B. Performing this task required

a kronecker product subroutine which was standard across both hamiltonian sub-

routines, detailed in the next subsection.

2.6.2 Kronecker Product Routine

In order to perform Kronecker products for the computation of the hamiltonian a

kronecker product subroutine was developed as a suitable version was not found in

a library. The developed subroutine is listen in Appendix B. The routine performs

double precision complex kronecker products for matrices of dimension m × n

and k × l producing a matrix of dimension mk × nl, which should work with two

dimensional matrices of any size, making it sufficient for the application necessary.
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2.6.3 Time scale of interaction routine

In order to consistently measure the timescale of interaction for the hyperfine and

magnetic interactions. Doing this required the ability to measure the distance

between maxima and minima in |Ci|2 as well as distinguish between maxima and

minima of the same size. This is performed by reading values from the final output

file of |Ci|2 and comparing values between timesteps to find maxima and minima.

Values of these maxima and minima are then stored to be compared to other

values and if a match is found then it is reported and the time between the points

is recorded in the file. In this way we have a consistent measure of timescale to be

used in analysis of the interactions. This routine can be found in Appendix B
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Results and Discussion

3.1 Spin Chain

For the simple spin chain with a basis of three states corresponding to one up

spin in each state, we obtained the results displayed in figure (3.1). Here the

probabilities of occupation for each state in the basis |Ci|2 are plotted against

the number of time steps performed by the program. As this simulation was

unphysical it was decided to display time-steps instead of using the time based on

the constants of the TDSE as the coupling constant J was arbitrary. The initial

conditions in the graph are C1 = 1 which was chosen as a good starting point for

investigation.

Written explicitly the basis set for this system is:

|ψ〉 =
N∑
i=1

Ci(t) |φi〉 = C1 |↑↓↓〉+ C2 |↓↑↓〉+ C3 |↓↓↑〉 (3.1)

It was found that for this case the probabilities of occupation for each state oscil-

lated with time and that these oscillations were periodic. The graph also shows

that the most probable state will pass down the chain, almost like a wave, before

being reflected at either end, resulting in the states corresponding to spin up at

either end of the chain being most probable.

21
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Figure 3.1: Graph of the probabilities of occupation for a 3 Spin Chain with
initial condition C1 = 1

3.1.1 Larger Spin Chains

Continuing the investigation to larger spin chains also yielded interesting results

as displayed in (3.2)

For four spins, the same oscillatory behaviour was observed, however the oscil-

lations did not seem periodic within the number of timesteps calculated by the

program. Thus the program was run again with a larger number of time-steps as

shown in figure (3.3).

On this larger scale it seemed that there was unlikely to be periodic behaviour, or

that such behaviour would at least require a very long time period to be apparent.

So a 5 spin chain was also investiaged for similarities as in figure (3.4).

As can be seen from figure (3.4), there is little periodicity, much as in figure (3.2).

It therefore seems that for chains of over three spins there is no periodicity with

the initial conditions C1(t = 0) = 1 and a constant coupling constant J
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Figure 3.2: Graph of the probabilities of occupation for a 4 Spin Chain with
initial condition C1 = 1
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Figure 3.3: Graph of the probabilities of occupation for a 4 Spin Chain with
initial condition C1 = 1 for an extended number of time-steps
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Figure 3.4: Graph of the probabilities of occupation for a 5 Spin Chain with
initial condition C1 = 1

3.1.2 Alternative Initial Conditions

In order to see if this was the case for all initial conditions, an alternative set of

conditions Ci(t = 0) = 1√
N

; i = 1, N , where N is the number of spins, was chosen.

For the 3 spin case the results are displayed in figure (3.5).

For the three spin chain, with these alternate initial conditions, similar periodic

behaviour was observed. However it seemed that the most probable state after

time evolution was C2, which was likely the case due to the ”wave” of probabilties

traveling to either end of the chain and then reflecting so that their amplitude

peaked in the center of the chain.

The same initial conditions were then computed for 4 spins in figure (3.6).

From figure (3.6), we can see similar behaviour to the case of 3 spins. However, as

there are two states corresponding a central spin up particle, we can see that both

states have equal probabilities. Interestingly, for these initial conditions it seems

to be the case that the probabilities are periodic, unlike with the C1(t = 0) = 1

initial condition. Similarly the case of 5 spins is displayed in figure (3.7).

In figure (3.7), the same behaviour is illustrated again. In this case however, there

is one central spin up state and two spins between the boundaries. Hence the
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Figure 3.5: Graph of the probabilities of occupation for a 3 Spin Chain with
initial conditions Ci = 1√

N
; i = 1, N
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Figure 3.6: Graph of the probabilities of occupation for a 4 Spin Chain with
initial conditions Ci = 1√

N
; i = 1, N
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Figure 3.7: Graph of the probabilities of occupation for a 5 Spin Chain with
initial conditions Ci = 1√

N
; i = 1, N

probability of the central spin being spin up has the highest peak and the ends

of the system the lowest trough, while the other two states oscillate a minimal

amount. This clearly illustrates this ”reflective” behaviour as there appears to be

nodes on the central spin up state and the ends, while the other two states have

almost anti-node oscillations.

It seems reasonable that this trend would continue for odd and even spins, with

the probability being highest for the central spins, being either a single spin or

pair of spins.

3.1.3 Periodicity

In addition to these initial conditions, a coupling constant specific to each inter-

action Ji,i+1 was tested, given by equation (2.9) as it was thought that this would

result in periodic behaviour for any set of initial conditions. This was unnecces-

sary to test on the 3 spin case as that was already periodic so the four spin case

was the first to be simulated as shown in figure (3.8), which is identical in input

to figure (3.2), aside from this new coupling constant.
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Figure 3.8: Graph of the probabilities of occupation for a 4 Spin Chain with
a periodic coupling constant and initial condition C1 = 1

As can be seen from figure (3.8), it is clear that this set of coupling constants does

indeed cause there to be periodic behaviour in the oscillation of probabilities.

Similarly for 5 spins there is (3.9) which demonstrates the same behaviour.

Next, the combination of the {Ci(t = 0) = 1√
N

; i = 1, N } initial conditions and

the new coupling constants were tested, first with four spins in figure (3.10) and

then with five in figure (3.11)

In figure (3.10), the same behaviour is observed as in figure (3.6), the only dif-

ference being period of the oscillations in probability. This shows that the new

coupling constant has no perculiar or novel effect on the system if it is already

periodic due to it’s initial conditions

The same behaviour is illustrated in figure (3.11), where a similar behaviour is

observed to the four spin case, with an equally similar change in period of the

oscillations.
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Figure 3.9: Graph of the probabilities of occupation for a 5 Spin Chain with
a periodic coupling constant and initial condition C1 = 1
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Figure 3.10: Graph of the probabilities of occupation for a 4 Spin Chain with
a periodic coupling constant and initial conditions Ci = 1√

N
; i = 1, N
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Figure 3.11: Graph of the probabilities of occupation for a 5 Spin Chain with
a periodic coupling constant and initial conditions Ci = 1√

N
; i = 1, N

3.1.4 Error

For each of these simulations the error as measured by
N∑
i=1

|Ci|2 was recorded at

each time-step in order to make sure the simulation was not runing into difficulties.

What follows is an analysis of the change in error over time and how it relates to

the results.

In figure (3.12), it can be seen that the sum of probabilities always remains ap-

proximately 1 throughout the duration of the simulation, with a small amount of

oscillation of around ±0.0003, which will also be the absolute and relative error.

These oscillations also have approximate the same period as figure (3.1), so this

oscillation is likely to simply be characterisitic of the system. It is therefore con-

cluded that the iterative method adopted is sufficiently accurate for the simple

spin chain type system with the variables chosen.

A similar situation is observed in figure (3.13), where the same oscillation is ob-

served. The only noticable difference between this system and the system in figure

(3.12) is the period of oscillation, which is slightly longer, the absolute and relative

error are around the same.
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Figure 3.12: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 3 spins and initial condition C1 = 1
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Figure 3.13: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 4 spins and initial condition C1 = 1
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Figure 3.14: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 3 spins with initial conditions Ci = 1√

N
; i = 1, N

Figure (3.14) shows the sum of probabilities with the Ci(t = 0) = 1√
N

; i = 1, N

initial conditions and 3 spins. From this graph it seems that the nature of the

oscillation of the sum of the probabilities is specific to the system as suspected.

There is a slight problem with the axes displayed on this graph as all of the values

on the y axis are displayed as one. This is due to the rounding of the values

perfomed by gnuplot and as such the values on the axis are less than 0.0001, so it

the error of the simulation for the system is minimal.

Figure (3.15) is similar to the three spin case with the alternative initial conditions,

however the time frame for this graph was too short as it was made as a pair from

the simulation run for the graph in figure (3.6). It would be interesting to run the

simulation over a longer period of time to see if the sum of probabilities is periodic

in the same way as the basis co-efficients.

The five spin case in figure (3.16) is also similar to the four spin case in that it

cannot be stated with certainty whether it is periodic. However, the same low

amount of error is observed.

For the coupling constant that resulted in periodic results, displayed in figure

(3.17), it was found that the error oscillated in a similar way to the single value
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Figure 3.15: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 4 spins with initial conditions Ci = 1√

N
; i = 1, N
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Figure 3.16: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 5 spins with initial conditions Ci = 1√

N
; i = 1, N
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Figure 3.17: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 4 spins with a periodic coupling constant and initial

condition C1 = 1

coupling constant shown in figure (3.13), which indicates that the oscillation in

error may be more due to initial conditions than the system itself.

When the initial conditions and periodic coupling constants were combined, as in

figures (3.18) and (3.19), it was found that the oscillation of error was both small

and periodic.

From the figures in this subsection, it seems quite likely that the results from the

spin chain program were sufficiently accurate for the results of the program to

be accepted assuming any error came from a lack of numerical precision and not

underlying theory. From here we progress onwards to representations of pseudo-

physical systems.

3.2 Hyperfine

The first set of results from the hyperfine hamiltonian program and displayed in

figures (3.20 - 3.23). These initial results were for the very simple one electron one

nuclei system so they are very basic, but provide some important insight into the

system. For this system the complete basis set is written:
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Figure 3.19: Graph of the sum of the probabilites of occupation of states for
the entire basis set with 5 spins with a periodic coupling constant and initial

conditions Ci = 1√
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; i = 1, N
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Figure 3.20: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei and initial condition C1 = 1

|ψ〉 =
N∑
i=1

Ci(t) |φi〉 = C1 |⇑; ↑〉+ C2 |⇑; ↓〉+ C3 |⇓; ↑〉+ C4 |⇓; ↓〉 (3.2)

In figure (3.20), the system remains in a single state throughout time, indicating

that the |⇑; ↑〉 state seems to be an eigenvalue of the system. This seems reasonable

as the system is fully polarised and so their can be no exchange of spins between

the particles.

In figures (3.21) and (3.22), we find the same periodic oscillation of probabilities

as those found in the spin chain between the |⇑; ↓〉 and |⇓; ↑〉 which seems to be

reasonable.

Finally, figure (3.23) displays the last pure state initial condition. Similar to the

results in (3.20), this is periodic and thus the |⇓; ↓〉 state is likely to also be an

eigenstate. This was then investigated further with the eigenvalue subroutine in

the program.



Chapter 3. Results 36

0

0.2

0.4

0.6

0.8

1

1.2

0 20000 40000 60000 80000 100000120000140000160000

p
ro

b
ab

il
it

y
of

o
cc

u
p
at

io
n

time (pico-seconds)

|C1|2
|C2|2
|C3|2
|C4|2

Figure 3.21: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei and initial condition C2 = 1
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Figure 3.22: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei and initial condition C3 = 1
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Figure 3.23: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei and initial condition C4 = 1

Eigenvalues 0.025 -0.075 0.025 0.025
Eigenvectors 0 0 1 0

1√
2

1√
2

0 0
1√
2

− 1√
2

0 0

0 0 0 1

Table 3.1: Eigenvalues of the electron hyperfine hamiltonian with 1 nuclei

3.2.1 Eigenstates

The eigenvalues yielded by the program for the single nucleus system are displayed

in table (3.1).

Based on these eigenvalues, the results from system with the C1 = 1 and C4 = 1

seem to match expectations as the associated states form the 3rd and 4th eigen-

vectors of the hamiltonian. In order to examine this further the initial conditions

C2 = 1√
2
;C3 = 1√

2
where also examined in order to show that these conditions also

resulted in stationary states and the results of this are displayed in figure (3.24),

also agreeing with expectations.
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Figure 3.24: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei and initial conditions C2 = 1√

2
;C3 = 1√

2

3.2.2 Number of Spins

Extending the system to 2 nuclei, we find a few more interesting properties of the

system. In figure (3.25), much as in the 1 nuclei case, we find that the initial

condition of C1 = 1 where all the spins are aligned is a stationary state and this

result is also confirmed by the eigenvalue routine.

Continuing to other initial conditions, we find that in the case of the initial con-

ditions C2 = 1 and C3 = 1 that the only states which become probable after time

evolution are those with an identical number of up and down spins to those in the

initial conditions. For example, when initialising the system in the state |⇑; ↑↓〉,
the only possible states the system can be found in upon measurement are |⇑; ↑↓〉,
|⇑; ↓↑〉 and |⇓; ↑↑〉. Hypothetically, this property could be used to reduce the size

of the matrices involved in the simulation and is very similar to the simple spin

chain discussed earlier, however as an external magnetic field is also used in the

program this is not practical for this simulation.

Finally, there is an interesting result in figure (3.28) as states |⇓; ↑↓〉 and |⇓; ↓↑〉)
both have equal probability at all times. This is because the system is initialised

in the state |⇑; ↓↓〉, so the spin up state can ”pass” to either of the two nuclei

as only the fermi contact is considered. This causes the same probability density
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Figure 3.25: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei and initial condition C1 = 1
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Figure 3.26: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei and initial condition C2 = 1
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Figure 3.27: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei and initial condition C3 = 1

reflective properties to occur as seen in the spin chain with a central up spin where

we find nodes and anti-nodes in the probability.

These results are symmetric, with the behaviour of C4 being identical to that of

C5 and the behaviour of C1 being identical to that of C8, which is to be expected

as there both nuclei interact equally with the electron as the modulation of the

interaction due to the location of the nuclei is not part of these results.

3.2.3 Fidelity

For the hyperfine interaction, fidelity was found to be somewhat similar to the

time evolution of the probabilities for pure states. This behaviour is illustrated

in figures (3.29) and (3.30). This seems reasonable as the inner product of the

basis vectors corresponding to the states with the total wavefunction would result

in the ”selection” of value in the row corresponding to the unity value in the

basis vector. This would result in the basis co-efficient being selected and then

the modulus squared of it’s value being found, resulting in the probability of that

basis state. This method might be more interesting for mixed states, but it when

the magnetic field is introduce the effect on the fidelity is interesting.
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Figure 3.28: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei and initial condition C4 = 1
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Figure 3.29: Graph of the fidelity of the electron hyperfine system with 1
nuclei and initial condition C2 = 1
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Figure 3.30: Graph of the fidelity of the electron hyperfine system with 2
nuclei and initial condition C2 = 1

2 129925.90193604678
3 129925.90193604678

Table 3.2: Table of the output of the timescale routine for 1 nuclei

3.2.4 Timescales of interaction

From the timescale subroutine the results in table (3.2) were obtained from 1 nuclei

case.

These values are sufficently close to the value predicted by equation (2.40) for self

consistency to be likely.

3.2.5 Spin distribution

In figures (3.31) and (3.32), we observe the effects of the modulations of the elec-

tron on the system. For the first modulation, with the nuclei located at the

standard deviation of the gaussian, we find that there is little change to system

other than a slow timescale of interaction due to the effective hyperfine interaction

being around half that of the unmodulated case.
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Figure 3.31: Graph of the time evolution of the electron hyperfine system
with 1 nuclei and initial condition C2 = 1 under the first modulation

However, for the second modulation in figure (3.32) it was found that having

the nuclei at positions smaller than the standard deviation resulted in other spin

states than the three previously found to be associated with the system. This is

almost certainly an error though as the sum of probabilities is above one, so future

distributions of spin will need to be examined more carefully.

3.3 Magnetic

Next the external magnetic field was introduced to the simulation and various

strengths and orientations were tested on the system.

Figures (3.33) and (3.34) illustrate the effect of a 0.001 telsa field in the positive

and negative z axis, with the positive z direction defined as being in the same

direction as the up spin vector. The effect of this field appears to be identical in

both directions however, which was odd because it was expected that effect of the

magnetic field would be around 3 orders of magntiude larger for the electron than

the nuclei, so it seems intuitive that the vector of the spin of the electron being in

the same direction as the magnetic field would be preferable.
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Figure 3.32: Graph of the time evolution of the electron hyperfine system
with 2 nuclei and initial condition C2 = 1 under the second modulation

However, it instead appears that the magnetic field simply reduces the likelyhood

of the hyperfine interaction in the one nuclei case, causing the spin state of the

system to be more likely to remain in the state it is initialised in.

However, with the same field in the two nuclei system the results become far

more interesting as shown in figures (3.35) and (3.36). Here we find that the

direction of the magnetic field causes the probability density to shift compared

to the non-magnetic case show in figure (3.26) similar to the probability density

shift of the spin half particle in a harmonic oscillator potential in Alistair Rae’s

Quantum Mechanics [15]. This shift appears to process forwards or backwards

in time depending on the orientation of the magnetic field, with the positive and

negative fields corresponding respectively.

It was also thought that when three spins were considered there would be a prefer-

ence for states which contained a majority of spins that aligned with the magnetic

field. However, no evidence for this behaviour was found in the results obtained.
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Figure 3.33: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei, initial condition C2 = 1 and a 0.001T magnetic

field
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Figure 3.34: Graph the time evolution of the probabilities of the electron
hyperfine system with 1 nuclei, initial condition C2 = 1 and a −0.001T magnetic

field
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Figure 3.35: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei, initial condition C2 = 1 and a 0.001T magnetic

field
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Figure 3.36: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei, initial condition C2 = 1 and a −0.001T magnetic

field
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Figure 3.37: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei, initial condition C2 = 1 and a 0.01T magnetic

field

3.3.1 Magnetic field strength

Next several larger magnetic field strengths were tested as it was expected that

the magnetic field interaction would start to dominate the system at around 0.01T

and this was indeed found to be the case as shown in figures (3.37) and (3.38).

This dominance allowed us to attempt to measure the timescale for the magnetic

field coupling and check it against expectation.

3.3.2 Timescales of interaction

Table (3.3) displays the output of the timescale routine of the 2 nuclei system

with a 0.01T magnetic field. Unlike the hyperfine results from table (3.2), there

is a wider range of values due to the larger number of nuclei and the interplay

of multiple interactions. However, it was found that the typical length of the

timescale of interaction was around 4 × 105, agreeing the predictions of equation

(2.44).
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Figure 3.38: Graph the time evolution of the probabilities of the electron
hyperfine system with 2 nuclei, initial condition C2 = 1 and a −0.01T magnetic

field

3.3.3 Effect on Fidelity

Similarly to the non-magnetic case, for pure initial conditions the fidelity is simply

the probability of the initial basis state, however the effect of the magnetic field

on this probability is of interest. The same shift of probability density occurs in

the fidelity as seen in figure (3.30) which is to be expected, but when the magnetic

field starts to become an order of magnitude larger than hyperfine interaction we

find that the fidelity is larger for a longer period of time, thus it seems that the

magnetic field increases the fidelity of the system.

3.4 Non-iterative

The non-iterative method was successfully implemented into the program, however

not much use was made of it due to it’s late inclusion. The method allowed for

much faster computation of the time evolution of the system with far less error

and it was verified that the output matched that of the iterative method through

comparison of results. Figure (3.41) shows how the routine was used to generate a

coarse version of the results by skipping timesteps that would have to be calculated
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Figure 3.39: Graph of the fidelity of the electron hyperfine system with 1
nuclei and initial condition C2 = 1 a 0.001T magnetic field
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Figure 3.40: Graph of the fidelity of the electron hyperfine system with 2
nuclei and initial condition C2 = 1 and a 0.01T magnetic field
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2 6.9000001028180122
5 20142.800300151110
2 20384.200303748250
1 37806.157716045454
1 40284.000600278378
2 40285.400600299239
3 40293.700600422919
5 40285.300600297749
2 40781.300607688725
1 37803.600563317537
1 40286.400600314140
5 40285.500600300729
3 40279.600600212812
2 40285.500600300729
3 40776.100607611239
5 40285.300600297749
2 40781.400607690215
1 37803.600563317537
3 40279.800600215793
5 40285.300600297749
1 40286.200600311160
2 40285.400600299239
3 40776.000607609749
5 40285.200600296259
2 40781.400607690215

Table 3.3: Table of output values for timescale routine for 2 nuclei system
with initial condition C2 = 1 and a 0.01T magnetic field

by the iterative method. This method proved to be both more accurate and faster

than the iterative method and would certainly be used in any future attempts at

simulation of this system.
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Figure 3.41: Coarse, non-iterative graph the time evolution of the probabilities
of the electron hyperfine system with 2 nuclei and initial condition C2 = 1



Chapter 4

Conclusions

4.1 Spin Chain

The spin chain was found to exhibit an oscillation of probabilities through time

evolution due to the coupling of the spins. This oscillation was found to always

be periodic when the system consisted of only three spins and to only be periodic

for larger systems when certain conditions about the coupling constant or the

intial conditions were met. Systems without these conditions were chaotic for the

time period investigated, although some periodic behaviour is still hypothetically

possible on a larger timescale than the time period simulated.

Error in the program was minimal, and seemed to be mostly related to the periodic

behaviour of the probabilities, validating the iterative approach taken in terms of

accuracy.

4.2 Hyperfine Interaction

The fermi contact hyperfine interaction between an electron and nuclei was found

to be similarly periodic to the case of the simple spin chain, with probabilities

only oscillating between basis states that shared an identical number of spins.

This interaction occured on a similar timescale to the one predicted and the error

due to the method of iteration was minimal.

52
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The key difference between the hyperfine interaction model and the spin chain was

the presence of a stationary state in the information basis of the hyperfine system.

In the simple spin chain, no states were stationary, but in the hyperfine model

at least two basis states were always eigenvectors. This is probably because the

hyperfine basis set allowed all of the spins to be in the same state.

The modulation of the electron seemed to work when the nuclei were distributed

on the positive and negative standard deviations of the gaussian, causing the

timescale of interaction to increase as would be expected. However, this broke

down for nuclei within the standard deviation of the gaussian for unknown reasons.

4.3 Magnetic Field

When the magnetic field was introduced it was found that a probability density

shift occured in a direction in time depending on the orientation of the magnetic

field. It was also found that the magnetic field seemed to make the initial state of

the system more likely to be preserved if this state was a pure state as demonstrated

through the measurement of fidelity and it would have been interesting to check

if this was the case for mixed states.

The magnetic field was also found to operate on a timescale similar to that which

was expected and also started to dominate when the field became stronger than

the hyperfine interaction.

4.4 Decoherence

In terms of decoherence, the investigation into this concept beyond looking at the

fidelity in the project was minimal. However, systems that did oscillate in time

were certainly displaying dephasing behaviour and it would have been interesting

to attempt to measure this more concisely and compare it to the values of typical

decoherence time for quantum dots in the literature.

It would have been interesting to investigate this relationship in terms of both

the number of nuclei in the system and the magnitude of the hyperfine coupling

constant. Unfortunately this did not occur due to time constraints.
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4.5 Further Directions

Some further directions this project could have been taken in would be to include

the hyperfine interactions between the nuclei as for larger numbers of nuclei, only

considering the fermi contact hyperfine interaction is less accurate.

Similarly, it would have been interesting to investigate the interactions with the

nuclei of two electrons modulated so that they also interacted with each other.

This approach would bring us closer to simulation of a 2-qubit gate, but this

would require a great deal of work.

It would also be interesting to simulate the current system for larger time periods

and with a greater number of nuclei, but this would require a greater amount of

computational resources and a way of collating the results from the large amounts

of data generated.
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Resources Used

The code was compiled using several flags displayed in table (A.2) using a make

file. The program was structured into modules such that it could be recompiled

depending upon the needs of the simulation and to maximise performance. The

program was run on the computer with specifications listed in table (A.1).

OpenMP was employed in the summations for each loop to make use of the laptop’s

dual core processor.

LAPACK was used in the diagonalisation of matrices to find the eigenvalues of

the hamiltonians.

Data was plotted using gnuplot with a plotting script written for each basis set.

Processor 2x Intel(R) Pentium(R) CPU B980 @ 2.40GHz
Memory 3942MB
Operating System Linux Mint 13 Maya

Table A.1: Computer used in simulation

Library Compiler flag
BLAS -lblas
LAPACK -llapack
OpenMP -fopenmp

Table A.2: Compiler flags used

55
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Code

� �
program simple_spinchain

impl ic i t none

integer , parameter :: dp=selected_real_kind (15 ,300)

5

!Set up integers

integer :: i, j !loop integers

integer :: t !time integers

10 !Set up complex values

complex(kind=dp) :: sum_C_H

rea l (kind=dp) :: Hij , sum_C_abs_sqrd

rea l (kind=dp), dimension(:,:), Allocatable :: H, basis

rea l (kind=dp), dimension(:), Allocatable :: Hi

15 complex(kind=dp), dimension(:), Allocatable :: C

!define variables

integer :: N = 5

integer :: t_max = 10000

20 rea l (kind=dp) :: A = 0.04 _dp

complex(kind=dp) :: k= (0.0_dp , 1.0E-2_dp)

!Open output file

open(100, f i l e ="C_output.dat")

25 open(200, f i l e ="sum_C_v_time.dat")

!allocate arrays

Allocate(C(1:N))

Allocate(H(1:N, 1:N))

56
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30 Allocate(basis (1:N, 1:N))

Allocate(Hi(1:N))

H( 1, 2) = A*sqrt( rea l (1*(N-1)))

H( 2, 3) = A*sqrt( rea l (2*(N-2)))

35 H( 2, 1) = A*sqrt( rea l (1*(N-1)))

H( 3, 2) = A*sqrt( rea l (2*(N-2)))

H( 4, 3) = A*sqrt( rea l (3*(N-3)))

H( 3, 4) = A*sqrt( rea l (3*(N-3)))

H( 5, 4) = A*sqrt( rea l (4*(N-4)))

40 H( 4, 5) = A*sqrt( rea l (4*(N-4)))

!Set up initial values - no normalisation required

C(1) = 1.0_dp

45

do i=1, N

!C(i) = 1.0_dp / SQRT(REAL(N,kind=dp))

end do

50 !Set up basis values

basis(1, 1:5) = (/1.0_dp ,0.0_dp ,0.0_dp ,0.0_dp ,0.0 _dp/)

basis(2, 1:5) = (/0.0_dp ,1.0_dp ,0.0_dp ,0.0_dp ,0.0 _dp/)

basis(3, 1:5) = (/0.0_dp ,0.0_dp ,1.0_dp ,0.0_dp ,0.0 _dp/)

basis(4, 1:5) = (/0.0_dp ,0.0_dp ,0.0_dp ,1.0_dp ,0.0 _dp/)

55 basis(5, 1:5) = (/0.0_dp ,0.0_dp ,0.0_dp ,0.0_dp ,1.0 _dp/)

!compute

!iterate over time from t=1 to t_max

do t=1, t_max

60

!iterate j from 1 to N

do j=1,N

sum_C_H = 0.0 _dp

65

!iterate i from 1 to N

do i=1,N

!call for complex matrix vector multiply

70 Hi = MATMUL(H, basis(i, 1:N))

!call for complex dot product

Hij = DOT_PRODUCT(basis(j, 1:N), Hi)
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75 sum_C_H = sum_C_H + C(i) * Hij

end do

!Find C(j)

80 C(j) = C(j) - k*sum_C_H

end do

!write to output file

85 write (100, *) (abs(C(i))**2.0_dp , i = 1, N), t

sum_C_abs_sqrd = 0.0 _dp

do i=1, N

sum_C_abs_sqrd = sum_C_abs_sqrd + abs(C(i))**2.0 _dp

end do

90 write (200, *) sum_C_abs_sqrd , t

end do

close (100)

95 c lose (200)

!deallocate arrays

deal locate (C)

deal locate (basis)

100 deal locate (H)

deal locate (Hi)

105 end program simple_spinchain� �
Listing B.1: Spin Chain Program

� �
!*********************************************

!

!Performs Kronecker product of two matrices A and B producing

matrix P

!n and m correspond to the dimensions of A and x and y

correspond to the dimensions of B

5 !dimensions of P are assumed to be n*x and m*y

!
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!*********************************************

subroutine kronecker_product(A, B, P, n, m, x, y)

impl ic i t none

10 integer , parameter :: dp=selected_real_kind (15 ,300)

integer :: i, j, k, l

integer :: n, m, x, y

complex(kind=dp), dimension(n, m) :: A

complex(kind=dp), dimension(x, y) :: B

15 complex(kind=dp), dimension(x*n, y*m) :: P

do i = 1, n

do j = 1, m

20 do k = 1, x

do l = 1, y

P((i-1)*x + k, (j-1)*y + l) = A(i, j) * B(k, l)

25 end do

end do

end do

end do

30

return

end subroutine kronecker_product� �
Listing B.2: Kronecker Product Subroutine

� �
!*********************************************

!Generates a hamiltonian for the hyperfine interaction from

pauli matrices

!*********************************************

subroutine hyperfine_hamiltonian

5 impl ic i t none

integer :: i, j, k

complex(kind=dp), dimension(3,2,2) :: pauli

rea l (kind=dp), dimension(2,2) :: identity

integer , dimension(1:N,1:N) :: diag_matrix

10 complex(kind=dp), dimension(:,:), Allocatable :: A

complex(kind=dp), dimension(2,2) :: B

complex(kind=dp), dimension(:,:), Allocatable :: P
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pauli(1, 1, 2) = 1.0_dp !Pauli x

15 pauli(1, 1, 1) = 0.0_dp !Pauli x

pauli(1, 2, 2) = 0.0_dp !Pauli x

pauli(1, 2, 1) = 1.0_dp !Pauli x

pauli(2, 1, 1) = 1.0_dp !Pauli z

20 pauli(2, 1, 2) = 0.0_dp !Pauli z

pauli(2, 2, 1) = 0.0_dp !Pauli z

pauli(2, 2, 2) = -1.0_dp !Pauli z

pauli(3, 1, 2) = (0.0_dp , -1.0_dp) !Pauli y

25 pauli(3, 1, 1) = 0.0_dp !Pauli y

pauli(3, 2, 2) = 0.0_dp !Pauli y

pauli(3, 2, 1) = (0.0_dp , 1.0_dp) !Pauli y

identity(1, 1) = 1.0_dp !Identity matrix

30 identity(2, 2) = 1.0_dp !Identity matrix

identity(1, 2) = 0.0_dp !Identity matrix

identity(2, 1) = 0.0_dp !Identity matrix

!Creates a diagonal matrix for permuations of spin

matrices

35 do i = 1, N

diag_matrix(i, i) = 1

end do

ca l l generate_positions (1)

40

!k signifies each of the cartesian dimensions

!x = 1

!z = 2

!y = 3

45 do k = 1, 3

!Loops over number of possible combinations of identity

and pauli matrices

do i = 1, N

50 !Allocates A input matrix for kronecker_product first

iteration

Allocate(A(1:2, 1:2))

i f (ierr /=0) stop ’Error in allocating matrix initial A’
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!Allocate matrix result for kronecker product so it set as

first pauli matrix

55 !and then can be deallocated in loop

Allocate(P(1:2, 1:2))

i f (ierr /=0) stop ’Error in allocating matrix initial P’

!Sets up the first A input matrix as the k dimension pauli

matrix

60 P = 0.5 * pauli(k, 1:2, 1:2)

!Loops over each matrix to be multiplied for this iteration

!Each j is a possible interaction pair

do j = 1, N

65

!Sets previous product as next input

A = P

!Deallocates product matrix so it can be reshaped

70 Deallocate(P)

i f (ierr /=0) stop ’Error in deallocating matrix P in loop

’

!Finds the next matrix product based on diagonlised

matrix

i f (diag_matrix(i, j) == 1) then

75 !Sets the B input matrix as the kth dimensional pauli

matrix

B(1:2, 1:2) = 0.5 * pauli(k, 1:2, 1:2) * exp(- ((

x_position(i))**2) / 2)

e l se

!Sets the B input matrix as the identity matrix (non -

interaction)

B(1:2, 1:2) = identity (1:2, 1:2)

80 end i f

!Allocates P matrix to the size of size of the next

k_product matrix

Allocate(P(1:2**(j+1), 1:2**(j+1)))

85 !Calls the tensor product for A and B producing P

!Dimensions of A are determined by place in j loop

c a l l kronecker_product(A, B, P, 2**j, 2**j, 2, 2)

!Deallocates input matrix A to prepare for next loop
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90 Deallocate(A)

i f (ierr /=0) stop ’Error in deallocating matrix A in loop

’

!Allocates input matrix A in next size to prepare for

next loop

Allocate(A(1:2**(j+1), 1:2**(j+1)))

95 i f (ierr /=0) stop ’Error in allocating matrix A in loop’

end do

!Deallocates A for this interaction

100 Deallocate(A)

i f (ierr /=0) stop ’Error in deallocating matrix A at end of

loop’

!Adds P to hamiltonian in matrix at each loop

!Allows for additional hamiltonian elements to be added

later

105 H(1:QN ,1:QN) = H(1:QN ,1:QN) + P(1:QN, 1:QN)

Deallocate(P)

i f (ierr /=0) stop ’Error in deallocating matrix P at end’

110 end do

end do

!Multiplies all hamiltonian elements by hyperfine

interaction constant

H = interaction_constant * H

115

!Writes Hamiltonian to file for debugging

open(400, f i l e ="hamiltonian.dat")

do i = 1, QN

write (400, *) (H(i, j), j = 1, QN)

120 end do

close (400)

return

125

end subroutine hyperfine_hamiltonian� �
Listing B.3: Hyperfine Hamiltonian Subroutine
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� �
!*********************************************

!generates a magnetic hamiltonian from pauli matrices for a

system of size N

!*********************************************

subroutine magnetic_hamiltonian

5 impl ic i t none

integer :: i, j

complex(kind=dp), dimension(2,2) :: pauli

rea l (kind=dp), dimension(2,2) :: identity

integer , dimension(1:N+1,1:N+1) :: diag_matrix

10 complex(kind=dp), dimension(:,:), Allocatable :: A

complex(kind=dp), dimension(2,2) :: B

complex(kind=dp), dimension(:,:), Allocatable :: P

pauli(1, 1) = 1.0_dp !Pauli z

15 pauli(1, 2) = 0.0_dp !Pauli z

pauli(2, 1) = 0.0_dp !Pauli z

pauli(2, 2) = -1.0_dp !Pauli z

identity(1, 1) = 1.0_dp !Identity matrix

20 identity(2, 2) = 1.0_dp !Identity matrix

identity(1, 2) = 0.0_dp !Identity matrix

identity(2, 1) = 0.0_dp !Identity matrix

!Creates a diagonal matrix for permuations of spin

matrices

25 do i = 1, N+1

diag_matrix(i, i) = 1

end do

!Loops over number of possible combinations of identity

and pauli matrices

30 do i = 1, N + 1

!Allocates A input matrix for kronecker_product first

iteration

Allocate(A(1:2, 1:2))

i f (ierr /=0) stop ’Error in allocating matrix initial A’

35

!Allocate matrix result for kronecker product so it set as

first pauli matrix

!and then can be deallocated in loop

Allocate(P(1:2, 1:2))
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i f (ierr /=0) stop ’Error in allocating matrix initial P’

40

!Finds the next matrix product based on diagonlised matrix

i f (diag_matrix(i, 1) == 1) then

!Sets the B input matrix as the kth dimensional pauli

matrix

P(1:2, 1:2) = 0.5_dp * (( bohr_magneton * g_electron)/

electron_charge) * pauli (1:2, 1:2) * 1E6_dp

45 e l se

!Sets the B input matrix as the identity matrix (non -

interaction)

P(1:2, 1:2) = identity (1:2, 1:2)

end i f

50 !Loops over each matrix to be multiplied for this iteration

!Each j is a possible interaction pair

do j = 2, N + 1

!Sets previous product as next input

55 A = P

!Deallocates product matrix so it can be reshaped

Deallocate(P)

i f (ierr /=0) stop ’Error in deallocating matrix P in loop

’

60

!Finds the next matrix product based on diagonlised

matrix

i f (diag_matrix(i, j) == 1) then

!Sets the B input matrix as the kth dimensional pauli

matrix

B(1:2, 1:2) = 0.5_dp * (( n_mag_moment *

nuclear_magneton)/electron_charge) * pauli (1:2, 1:2) * 1

E6_dp

65 e l se

!Sets the B input matrix as the identity matrix (non -

interaction)

B(1:2, 1:2) = identity (1:2, 1:2)

end i f

70 !Allocates P matrix to the size of size of the next

k_product matrix

Allocate(P(1:2**(j+1), 1:2**(j+1)))
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!Calls the tensor product for A and B producing P

!Dimensions of A are determined by place in j loop

75 c a l l kronecker_product(A, B, P, 2**j, 2**j, 2, 2)

!Deallocates input matrix A to prepare for next loop

Deallocate(A)

i f (ierr /=0) stop ’Error in deallocating matrix A in loop

’

80

!Allocates input matrix A in next size to prepare for

next loop

Allocate(A(1:2**(j+1), 1:2**(j+1)))

i f (ierr /=0) stop ’Error in allocating matrix A in loop’

85 end do

!Deallocates A for this interaction

Deallocate(A)

i f (ierr /=0) stop ’Error in deallocating matrix A at end of

loop’

90

!Adds P to hamiltonian in matrix at each loop

!Allows for additional hamiltonian elements to be added

later

H(1:QN ,1:QN) = H(1:QN ,1:QN) + mag_field * P(1:QN, 1:QN)

95 Deallocate(P)

i f (ierr /=0) stop ’Error in deallocating matrix P at end’

end do

100

!Writes Hamiltonian to file for debugging

open(400, f i l e ="hamiltonian.dat")

do i = 1, QN

write (400, *) (H(i, j), j = 1, QN)

105 end do

close (400)

return

110 end subroutine magnetic_hamiltonian� �
Listing B.4: Magnetic Hamiltonian Subroutine
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� �
subroutine intergrate_TDSE

impl ic i t none

!Library header for OpenMP

5 !Required for single memory multiple processor operations

!Requires compiler flag -fopenmp in gnu compilers to

enable

include ’omp_lib.h’

!subroutine variables

10 integer :: i, j !Loop

integers

complex(kind=dp) :: sum_C_H !Sum

of Complex values multipled by Hij

!iterate j from 1 to QN

15 do j=1,QN

!Set summation to zero to initial addition in next loop

sum_C_H = 0.0 _dp

20 !$OMP parallel do private(i) shared(C, H, j) reduction

(+: sum_C_H)

!iterate i from 1 to QN

!With OpenMP enabled this loop is performed on each

thread seperately

!Values of sum_C_H are added together from each thread

at end of loop

do i=1,QN

25

!Adds product of C(i) and Hij to summation

!This is processed individually on each thread then summed

at end

!if openMP is enabled (-fopenmp)

sum_C_H = sum_C_H + C(i) * H(j, i)

30

end do

!$OMP end parallel do

!ends the parallel do loop for openMP

35

!print *, i, j, sum_C_H
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!Find C(j) by multiplying TDSE_constant with sum_C_H

C(j) = C(j) - TDSE_constant * sum_C_H

40

end do

45

end subroutine intergrate_TDSE� �
Listing B.5: Iterative Time Evolution Subroutine

� �
subroutine find_wavefunction(time , D)

impl ic i t none

real (kind=dp) :: time !time double precision value

fed from program in loop

integer :: i, j !loop variables

5 complex(kind=dp), dimension(1:QN) :: D

!sets C to zero for summation

C(:) = 0.0_dp

10 !loops over each eigenvector and basis element to find

complete wavefunction values at specified time

do i=1, QN

do j=1, QN

C(j) = C(j) + D(i) * exp(( eigenvalues(i) * cmplx (0.0_dp

, time , kind=dp))/hbar) * eigenvectors(j, i)

end do

15 end do

end subroutine find_wavefunction

20 subroutine rotate_basis(D)

impl ic i t none

integer :: i, j !loop variables

complex(kind=dp), dimension(1:QN) :: initial_coeffs !

complex initial coefficients of eigenvectors

complex(kind=dp), dimension(1:QN) :: D

25

!manually set up co-efficients for testing



Appendix B. Code 68

initial_coeffs (:) = 0.0 _dp

initial_coeffs (2) = 1.0 _dp

30 D(:) = 0.0_dp

do i = 1, QN

do j = 1, QN

D(i) = D(i) + initial_coeffs(j) * conjg(eigenvectors(j,

i))

35 end do

end do

end subroutine rotate_basis� �
Listing B.6: Non-Iterative Time Evolution Subroutine

� �
!*********************************************

! Uses LAPACK to find eigenstates of passed matrix using

DGEEV functions

! DGEEV finds the eigenvectors and eigenvalues of general

matrices

!

5 ! Matrix is assumed to be size NxN with N passed into

subroutine

!

!*********************************************

subroutine find_eigenstates(A, N, eigenvalues , eigenvectors)

impl ic i t none

10

integer , parameter :: dp=selected_real_kind (15 ,300)

integer :: i, j !Loop integers

integer :: N

15 integer , parameter :: LIWORK = 256 !Size of the work

array

integer :: ierr

!Variables for DGEEV function

rea l (kind=dp), dimension(1:N) :: WR !Work (real)

20 rea l (kind=dp), dimension(1:N) :: WI !Work (imaginary)

rea l (kind=dp), dimension(1:N, 1:N) :: A !Input matrix

rea l (kind=dp), dimension(1:N,1:N) :: VL !Left vector(

unused)
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rea l (kind=dp), dimension(1:N,1:N) :: VR !Right vector (

calculated)

integer , dimension(1: LIWORK) :: WORK !Work array used

in calculating

25

!Output variables

complex(kind=dp), dimension(1:N, 1:N) :: eigenvectors

complex(kind=dp), dimension(1:N) :: eigenvalues

30

!calls the DGEEV function to calculate eigenstates for

matrix A.

!

35 ! A(i, j) * V(i) = W(i) * V(i)

!

! Where V is the eigenvector and W is the eigenvalue

!

c a l l DGEEV( ’N’, ’V’, N, A, N, WR, WI, VL, 1, VR, N, WORK ,

LIWORK , ierr)

40

!Reports errors if DGEEV fails to process using intrinsic

error codes in argument

! = 0: successful exit

! < 0: if INFO = -i, the i-th argument had an

illegal value.

! > 0: if INFO = i, the QR algorithm failed to

compute all the

45 ! eigenvalues , and no eigenvectors have been

computed;

! elements i+1:N of WR and WI contain

eigenvalues which

! have converged.

i f (ierr /=0) then

print *, ’Error in solving eigenstates of hamiltonian ’

50 i f (ierr <0) then

print *, ’value’, ierr , ’had illegal value ’

e l se

print *, ’dgeev failed to converge ’

end i f

55 stop

end i f
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!Open file for saving of eigenstates

open(600, f i l e =’eigenstates.dat’, i o s tat =ierr)

60

!Writes to file if there is no error in opening file

i f (ierr ==0) then

!Loops over each eigenvector and eigenvalue pair

do j=1, N

65 !Writes only real to file if there is no imaginary part to

eigenvalue

i f (WI(j)==0.0 _dp) then

write (600 ,*) ’Eigenvalue ’, j, ’=’, WR(j)

!Copies eigenvalue to output variable

eigenvalues(j) = cmplx(WR(j), 0.0_dp , kind=dp)

70 !Writes both complex and real parts otherwise

e l se

write (600 ,*) ’Eigenvalue ’, j, ’=’, WR(j), ’+’, WI(j), ’i’

!Copies eigenvalue to output variable

eigenvalues(j) = cmplx(WR(j), WI(j), kind=dp)

75 end i f

write (600 ,*) !Blank line

write (600 ,*) ’Eigenvector ’, j, ’=’ !formatting

write (600 ,*) !Blank line

80

!Writes real parts of eigenvectors if eigenvalue is real

i f (WI(j)==0.0 _dp) then

do i=1, N

write (600, *) VR(i, j)

85 !Copies eigenvector to output variable

eigenvectors(i, j) = cmplx(VR(i, j), 0.0_dp , kind=dp)

end do

!Writes eigenvalue pair to file if eigenvalue is complex

and greater than zero

e l s e i f (WI(j) >=0.0_dp) then

90 do i=1, N

write (600 ,*) VR(i, j), ’+’, VR(i, j+1), ’i’

!Copies eigenvector to output variable

eigenvectors(i, j) = cmplx(VR(i, j), VR(i, j + 1), kind

=dp)

end do

95 !Writes eigenvalue pair to file if eigenvalue is complex

and less than zero

!typically second part of pair

e l se
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do i=1, N

write (600 ,*) VR(i, j-1), ’+’, VR(i, j), ’i’

100 !Copies eigenvector to output variables

eigenvectors(i, j) = cmplx(VR(i, j - 1), VR(i, j), kind

=dp)

end do

end i f

105 write (600 ,*) !Blank line

end do

e l se

!If error opening file , aborts program and prints error

message

110 stop ’Error in opening file eigenstates.dat’

end i f

!Closes file and reports error if failure

c lose (600, i o s tat =ierr)

115 i f (ierr /=0) stop ’Error in closing file eigenstates.dat’

end subroutine find_eigenstates� �
Listing B.7: Eigenstate Subroutine. Uses LAPACK routine DGEEV [16]
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