
N U M E R I C A L S I M U L AT I O N O F O N E WAY Q U A N T U M
C O M P U TAT I O N W I T H E R R O R C O R R E C T I O N

john children

MSc Project Report

MSc Quantum Technologies
Physics and Astronomy

University of Leeds

September 2014 – version 1.2

A B S T R A C T

We investigate one way quantum computation and an associated er-
ror correction scheme in order to build a numerical Monte Carlo
model for fault tolerance for the model. Though the model is incom-
plete, we draw conclusions about difficulties in construction of the
model and advise improvements that could be made to simulate the
system accurately.

Word count: 15979

ii

C O N T E N T S

List of Figures vi
Listings vii
1 introduction and background 1

1.1 Cluster States 1

1.2 Measurement Based Quantum Computation 1

2 one way quantum computation 3

2.1 Hamiltonian on interacting particles 3

2.2 Two qubit cluster state 4

2.3 Three qubit cluster state 6

2.4 Quantum controlled Z operator 8

2.5 Measurement based gate operation 9

2.5.1 One bit teleportation 9

2.5.2 Controlled not gate 11

2.5.3 Gate universality 12

3 error correction 14

3.1 Logical qubits 14

3.2 Logical operations 17

3.2.1 Logical Z operation 17

3.2.2 Logical X operation 19

3.2.3 Logical Hadamard operation 19

3.2.4 Logical rotation operation 20

3.2.5 Logical controlled Z operation 22

3.3 Entangled three qubit states 23

3.3.1 Demonstration of the validity of simpler opera-
tions 25

3.3.2 Second set of diagonal operations 28

3.3.3 Final diagonals 29

3.4 General Encoding 30

3.5 Error 30

3.6 Higher Complexities 32

4 simulation of one way quantum computation 33

4.1 Set-up 33

4.1.1 Resources used 33

4.1.2 Subroutines 34

4.1.3 Libraries 34

4.1.4 Precision 35

4.2 CZ Operation 35

4.2.1 Kronecker Product routine 35

4.2.2 Improvements 37

4.3 Other qubit operations 38

4.3.1 Pauli Z Operation 38

4.3.2 Hadamard Operation 38

iii

contents iv

4.3.3 Logical Operations 39

4.4 Measurement 39

4.4.1 Random measurement in basis 39

4.4.2 Pauli bases measurement 40

4.4.3 Arbitrary measurement 40

4.4.4 Feed Forward 41

4.4.5 Multiple Outputs 41

4.5 Decomposition 41

4.5.1 Rank decomposition 42

4.5.2 Single value decomposition 43

4.6 Error 45

4.6.1 Flip error 46

4.6.2 Phase error 47

4.7 Data Analysis 47

4.7.1 Fidelity 47

4.7.2 Bulk data 47

4.8 Error Correction Scheme 48

4.8.1 Encoding 48

4.8.2 Correction 48

4.9 Other structures 48

4.9.1 Controlled not gate 49

4.9.2 Controlled phase gate 49

4.9.3 Quantum Fourier transform 50

5 conclusions 51

5.1 Choice of resources 51

5.2 Matrix Decomposition 51

5.3 Further Work 52

6 additional work 53

6.1 Errata 53

6.1.1 Basis measurement 53

6.1.2 Normalisation 54

6.1.3 Feed forward operators 54

6.1.4 Measurement subroutine 55

6.1.5 Numerical Value Precision 57

6.2 Adjustments and Improvements 58

6.2.1 Rearrangement of fidelity function 58

6.2.2 Measurement subroutine 58

6.2.3 Libraries 58

6.2.4 Data format 59

6.3 Program outputs 59

6.4 Larger chain program 61

6.4.1 Projection operators 61

6.4.2 Outer product subroutine 62

6.4.3 New measurement subroutine 62

6.4.4 Retrieving output states 63

6.5 Observations 63

contents v

6.5.1 Subroutine improvements 64

6.5.2 Timing and Scaling 65

6.6 Conclusions 67

a appendix a : code 68

a.1 Single Chain Program 68

a.2 CZ Operation Module 72

a.3 Kronecker Product Module 77

a.4 Measurement Module 86

a.5 Fidelity Function 98

b appendix b : resources used 101

b.1 Computer Used 101

b.2 Compiler Settings 101

c appendix c : additional code 102

c.1 Single Chain Program 102

c.2 Projection operators program 107

c.3 Kronecker Product Module 112

c.4 Measurement Module 125

c.5 Repeating single chain program 138

c.6 Repeating projection operators program 143

bibliography 148

L I S T O F F I G U R E S

Figure 1 Sketch of information flow in one way compu-
tation [1] 2

Figure 2 Universal set of quantum gates [1] 13

Figure 3 Error correction table based on outcomes in
auxiliary qubits [2] 31

Figure 4 Full error correction circuit [2] 31

Figure 5 Controlled phase gate structure and function-
ality [1] 49

Figure 6 Quantum Fourier transform schema [1] 50

Figure 7 Graph of system CPU time against length of
simulated chain for the SVD measurement method
65

Figure 8 Graph of system CPU time against length of
simulated chain for the projection operator mea-
surement method 66

vi

L I S T I N G S

Listing 1 CZ generation main algorithm 36

Listing 2 Rank decomposition algorithm 42

Listing 3 Old Measurement Algorithm 56

Listing 4 New Measurement Algorithm 57

Listing 5 Outer product algorithm 62

Listing 6 Modified rank decomposition algorithm 63

Listing 7 Single qubit gate program 68

Listing 8 CZ Operation Module 72

Listing 9 Kronecker Product Module 77

Listing 10 Measurement Module 86

Listing 11 Fidelity Function 98

Listing 12 Single qubit gate program 102

Listing 13 Projection operators program 107

Listing 14 Kronecker Product Module 112

Listing 15 Measurement Module 125

Listing 16 Repeating single chain program 138

Listing 17 Repeating projection operators program 143

vii

1
I N T R O D U C T I O N A N D B A C K G R O U N D

The very first step in development of a numerical simulation for a one
way quantum computer, is to define terms so that the accuracy of the
model can be checked. To this aim, we first establish a definition of
cluster states as well as the features of a measurement based quantum
computer so that we can examine the functionality of the one way
quantum computer.

1.1 cluster states

The main phenomenon enabling measurement based quantum com-
putation is through the use of cluster states [3]. These states are
formed of N qubits interacting with each other in arrays with a high
’persistency’ of entanglement [4]. Persistency is defined in ’Persistent
entanglement in arrays of interacting particles’ as the minimum num-
ber of local measurements such that the state is completely disentan-
gled for all measurement outcomes. This property means that mea-
surements can be made on individual qubits in the state that will not
entirely disentangle the state [4], allowing information to be passed
from one qubit to another. Additionally, the states are also said to be
’maximally connected’ if they measurements on qubits in a set can
project two seperate qubits into a pure Bell state [4]. This has the ad-
vantage of allowing easily teleportable states be produced through
measurements on these cluster states.

These states are generally formed in either optical lattices [5] or
from photons [6, 7], though other implementations are possible [3].

1.2 measurement based quantum computation

The term ’measurement based quantum computer’ refers to a whole
class of quantum computer architectures that use measurements in-
stead of unitary operators to process information [8]. Unlike some
other ’alternative’ methods of quantum computation, such as quan-
tum annealing devices, Measurement based quantum computers are
both universal and do not suffer from as greatly from problems with
decoherence as qubits are discarded after measurement [8]. However,
different challenges arise from the difficulty in forming the required
states and then measuring specific qubits [3].

In the specific case of the one way quantum computer, using the
two properties of cluster states mentioned earlier, it is possible to
perform measurements on a ’lattice’ of entangled particles in order

1

1.2 measurement based quantum computation 2

Figure 1: Sketch of information flow in one way computation [1]

to form a kind of quantum circuit that processes information [9] and
this is illustrated in figure 1. The exact functionality of these circuits
will be shown in the next section.

2
O N E WAY Q U A N T U M C O M P U TAT I O N

In order to demonstrate how numerical simulation of one way quan-
tum computation might be achieved, the first step is to examine the
operation of the one way quantum computation. This involves exam-
ination of how cluster states can be formed as well as the function
performed by measurement so that these procedures can be included
in the simulation. In this regard, the procedures for functionality are
detailed here so they might be compared to the program in later sec-
tion to verify correct functionality.

2.1 hamiltonian on interacting particles

Following the work in ’Persistant Entanglement In Arrays of Inter-
acting Particles’, the Hamiltonian for a d-dimensional lattice at sites
a ∈ Zd interacting through short range interaction is [4]:

Ĥint = h̄g(t)∑
a,a′

f (a− a′)
1− σa

z
2

1− σa′
z

2
(1)

where:

f (a− a′)− interaction range

g(t)− time dependence of interaction

σz − pauli-z operation

From the time dependent Schrödinger equation we extract the time
evolution of a wavefunction:

ih̄
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (2)

|Ψ(t)〉 = e−
iĤt

h̄ |Ψ(0)〉 (3)

From which we extract the time dependence operator:

Û(t) = e−
iĤt

h̄ (4)

Substituting the interaction Hamiltonian (1) into the time depen-
dence operator(4) gives:

Û(t) = exp

(
−ig(t)t ∑

a,a′
f (a− a′)

1− σa
z

2
1− σa′

z
2

)
(5)

3

2.2 two qubit cluster state 4

Considering a one-dimensional chain of N-qubits with only next
neighbour interactions the interaction range can be expressed as:

f (a− a′) = δa+1,a (6)

Which will prevent qubits interacting with themselves and allow
nearest neighbour interactions. Now we introduce a term φ which
represents the integration of the time dependence of interaction such
that:

φ =
∫

g(t) dt = Cg(t)t + D (7)

Where C and D are constants. Therefore the time evolution opera-
tor becomes

Û(t) = exp

(
−iφ ∑

a

1− σa
z

2
1− σa+1

z
2

)
(8)

2.2 two qubit cluster state

We can further refine this operator for the interaction between two
qubits through the use of Euler’s relation for operators:

eiθÂ = cos(θ)1̂ + i sin(θ)Â (9)

Now,we can expand the equation (8) as there are only two qubits
to give:

Û(t) = exp
(
− iφ

4
(1⊗ 1− 1⊗ σz − σz ⊗ 1 + σz ⊗ σz)

)
(10)

Typically we would need to apply the Baker-Campbell-Hausdorff
formula to convert these terms into something more manageable,
however the operators 1 and σz are commutative, as are their ten-
sor products, so all but the first two terms of the Baker-Campbell-
Hausdorff expansion can be neglected leaving:

Û(t) = exp(− iφ
4

1⊗ 1)exp(
iφ
4

σz⊗ 1)exp(
iφ
4

σz⊗ 1)exp(− iφ
4

σz⊗ σz)

(11)

Applying equation (9):

2.2 two qubit cluster state 5

Û(t) = exp(− iφ1

4
)(

cos(
iφ
4
)1⊗ 1 + i sin(

iφ
4
)1⊗ σz

)
(

cos(
iφ
4
)1⊗ 1 + i sin(

iφ
4
)σz ⊗ 1

)
(

cos(
−iφ

4
)1⊗ 1 + i sin(

−iφ
4

)σz ⊗ σz

)
(12)

In the case of φ = π this becomes:

Û(t) =
1

2
√

2
exp(− iπ

4
)1

(1⊗ 1 + i1⊗ σz)

(1⊗ 1 + iσz ⊗ 1)

(1⊗ 1− iσz ⊗ σz)

(13)

Now, expanding brackets and simplifying in two steps:

Û(t) =
1

2
√

2
exp(− iπ

4
)1

(1⊗ 1− σz ⊗ σz + i1⊗ σz + iσz ⊗ 1)

(1⊗ 1− iσz ⊗ σz)

=
1

2
√

2
exp(− iπ

4
)

(1⊗ 1− σz ⊗ σz + i1⊗ σz + iσz ⊗ 1

+ i1⊗ 1− iσz ⊗ + 1⊗ σz + σz ⊗ 1)

Factorising real and imaginary terms:

Û(t) =
1
2

exp(− iπ
4
)

1 + i√
2

(1⊗ 1− σz ⊗ σz + 1⊗ σz + σz ⊗ 1)

(14)

As exp(− iπ
4) =

1−i√
2

equation (14) simplifies to:

2.3 three qubit cluster state 6

Û(t) =
1
2
(1⊗ 1 + 1⊗ σz + σz ⊗ 1− σz ⊗ σz)

(15)

If this operator is applied to two qubits in the |++〉 state, for exam-
ple, we get:

Û(t) |++〉 = 1
2
(|++〉+ |+−〉+ |−+〉 − |−−〉)

=
1√
2
(|+0〉+ |−1〉)

(16)

2.3 three qubit cluster state

By using the same method used in the previous section, we can also
obtain a the time evolution operator for a chain of three qubits only
interacting with their nearest neighbour. In this case the time evolu-
tion operator will be

Û(t) = exp
(
−iφ

(
1− σ1

z
2

1− σ2
z

2
1 + 1

1− σ2
z

2
1− σ3

z
2

))
(17)

Expanding out this expression gives:

Û(t) = exp(− iφ
4
(21⊗ 1⊗ 1− 21⊗ σz ⊗ 1

− σz ⊗ 1⊗ 1− 1⊗ 1⊗ σz

+ σz ⊗ σz ⊗ 1 + 1⊗ σz ⊗ σz))

(18)

Applying Baker-Campbell-Hausdorff and Euler’s rule:

2.3 three qubit cluster state 7

Û(t) = exp(− iφ
2
)(

cos(
iφ
2
)1⊗ 1⊗ 1 + i sin(

iφ
2
)1⊗ σz ⊗ 1

)
(

cos(
iφ
4
)1⊗ 1⊗ 1 + i sin(

iφ
4
)σz ⊗ 1⊗ 1

)
(

cos(
iφ
4
)1⊗ 1⊗ 1 + i sin(

iφ
4
)1⊗ 1⊗ σz

)
(

cos(
−iφ

4
)1⊗ 1⊗ 1 + i sin(

−iφ
4

)σz ⊗ σz ⊗ 1

)
(

cos(
−iφ

4
)1⊗ 1⊗ 1 + i sin(

−iφ
4

)1⊗ σz ⊗ σz

)

Once again, using φ = π, we expand the terms of the equation and
simplify

Û(t) = exp(− iπ
2
)(i1⊗ σz ⊗ 1)

(1⊗ 1⊗ 1 + iσz ⊗ 1⊗ 1)(1⊗ 1⊗ 1 + i1⊗ 1⊗ σz)

(1⊗ 1⊗ 1− iσz ⊗ σz ⊗ 1)(1⊗ 1⊗ 1− i1⊗ σz ⊗ σz)

= exp(− iπ
2
)(i1⊗ σz ⊗ 1)

(1⊗ 1⊗ 1 + iσz ⊗ 1⊗ 1 + i1⊗ 1⊗ σz − σz ⊗ 1⊗ σz)

(1⊗ 1⊗ 1− iσz ⊗ σz ⊗ 1− i1⊗ σz ⊗ σz + σz ⊗ 1⊗ σz)

= exp(− iπ
2
)(i1⊗ σz ⊗ 1)

(1⊗ 1⊗ 1− i1⊗ σz⊗ σz− iσz⊗ σz⊗ 1− σz⊗ 1⊗ σz + iσz⊗ 1⊗ 1

+ σz ⊗ σz ⊗ σz + 1⊗ σz ⊗ 1− i1⊗ 1⊗ σz + i1⊗ 1⊗ σz

+ 1⊗ σz ⊗ 1 + σz ⊗ σz ⊗ σz − iσz ⊗ σz ⊗ 1− σz ⊗ 1⊗ σz

+ iσz ⊗ σz ⊗ 1 + i1⊗ σz ⊗ σz + σz ⊗ σz ⊗ σz)

Many of these terms will cancel and as 1
2 exp(− iπ

2) =
i
2 we are left

with:

Û =
1
2
(1⊗ 1⊗ 1 + 1⊗ σz ⊗ 1 + σz ⊗ 1⊗ σz − σz ⊗ σz ⊗ σz) (19)

Applying this to the state |+++〉:

Û |+++〉 = 1√
2
(|+0+〉+ |−1−〉) (20)

2.4 quantum controlled z operator 8

However, we could have quite simply achieved the result from
equation (19) by applying equation (15) twice to the three qubits. This
is due to the nature of the interaction Hamiltonian being used and
as such we can consider all links between two qubits to have this
same property and as such we can construct time evolution opera-
tors for any system using this operator as a building block. This can
be demonstrated by applying the unitary operator (15) to the state
described in (16) and an addition |+〉 state.

1
2
(12 ⊗ 13 + 12 ⊗ σz3 + σz2 ⊗ 13 − σz2 ⊗ σz3)

1√
2
(|+0〉+ |−1〉) |+〉

=
1

2
√

2
(|+〉 (|0+〉+ |0−〉+ |0+〉 − |0−〉)

+ |−〉 (|1−〉+ |1+〉 − |1−〉+ |1+〉))

=
1√
2
(|+0+〉+ |−1−〉)

(21)

Hence CZ operators can be applied in sequence to form cluster
states of any desired size or topology. This will be utilised later in the
programming stage when creating subroutines to handle the initiali-
sation of the system.

2.4 quantum controlled z operator

Consider a 2 qubit state prepared as |++〉 and subject to the unitary
transform (15) for two qubit cluster states:

Û |++〉 = 1√
2
(|+0〉+ |−1〉)

=
1
2
(|00〉+ |01〉+ |10〉 − |11〉)

=
1
2

1

1

1

−1

As the matrix expression for |++〉 is:

|++〉 = 1
2

1

1

1

1

 (22)

2.5 measurement based gate operation 9

So the transformation matrix between the two is:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (23)

Which can be expressed as a unitary transform that forms a condi-
tional phase gate between qubits a and b.

Sab = |0〉a 〈0| ⊗ 1b + |1〉a 〈1| ⊗ σb
z (24)

Therefore the unitary operator is equivalent to the CZ operation
in the circuit model. In general we can perform a controlled phase
operation in the z axis in a similar form:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iα

 (25)

Where α is the phase of the operation.

2.5 measurement based gate operation

The basic principle of computation in the one way quantum com-
puter follows three simple steps. The first step involves the formation
of a cluster state through the use of the CZ operation demonstrated
earlier. The next step involves measurement of the state of specific
qubits in a particular measurement basis depending upon the com-
putational operation required. Finally, the outcomes of measurement
are fed forward in order to determine the result of computation when
the output is measured. Therefore we shall next examine the types
of measurements required to achieve quantum computation through
this method.

2.5.1 One bit teleportation

The most simple kind of operation that can be performed in one way
quantum computation is through the use of teleportation to transfer
the state of one qubit so that the information of the state can be pro-
jected to the other through applying measurements with a particular
basis to the first qubit. To demonstrate this in general we can consider

2.5 measurement based gate operation 10

a qubit in unknown state |ψ〉1 = a |0〉1 + b |1〉1 and second qubit in
state |+〉.

|ψ〉1 ⊗ |+〉2 = (a |0〉1 + b |1〉1)
1√
2
(|0〉1 + |1〉1) (26)

A CZ operation is applied to qubit 1 and 2 such that they become
entangled similarly to the two qubit + state in (16).

CZ12 |ψ〉12 =
1√
2
(a |00〉12 + a |01〉12 + |10〉12 − b |11〉12)

= (a |0+〉12 + b |1−〉12)

(27)

The first qubit is then measured in a basis corresponding to it’s
phase angle.

M̂ = { | +ψ〉 〈+ψ | , | −ψ〉 〈−ψ | } (28)

There are two possible measurement outcomes |+ψ〉1 and |−ψ〉2
that can result here. In the first case of |+ψ〉1.

|+ψ〉1
1√
2
(〈0|1 + e−iψ 〈1|1)(a |0+〉12 + b |1−〉12)

= |+ψ〉1 [〈0|0〉1 a |+〉2 + e−iψ 〈1|1〉1 b |−〉2]

=
1√
2
|+ψ〉1 (a |+〉2 + e−iψb |−〉2)

(29)

The information contained in the phase of the original qubit can
then be obtained through the application of a series of operations
which will project the information state onto the second qubit.

|out0〉2 = a |+〉2 + be−iψ |−〉2
= H2(a |0〉2 + be−iψ |1〉2)

= e
−iψ

2 HRz(−ψ)(a |0〉2 + b |1〉2)
(30)

However, when the opposite measurement outcome occurs, the
state will be projected such that an X operation is also required.

|out1〉2 = X2(a |+〉+ be−iψ |−〉)
= X2 |out0〉2

(31)

2.5 measurement based gate operation 11

Thus in general we can recover the information projected onto one
qubit through the measurement of two qubits entangled by a CZ op-
eration through the following operations:

|outmi〉2 = e
−iψ

2 Xmi HRz(−ψ)(a |0〉2 + b |1〉2) (32)

Where mi represents the number of the basis used in measurement.

2.5.2 Controlled not gate

In order to form a CNOT gate however, at least two qubits are re-
quired so the generalised rotation shown in the previous section is
not sufficient. Therefore a new geometry is required which forms a
T-shape consisting of four qubits. On the left end of longer side of
the shape we have our target qubit in a particular state |ψT〉 and on
the bottom of the shape is the control qubit |φc〉. The relationship be-
tween the states of these two qubits is such that the intended output
will be:

CNOT14 |ψT〉 |φC〉 = CNOT14(a |0〉1 + b |1〉1)(c |0〉4 + d |1〉4)
= ac |00〉14 + bd |01〉14 + bc |10〉+ ad |11〉14

(33)

In order to prepare the qubits for measurement we prepare a state
|ψin〉 that denotes the input state of the qubits formed of multiple
CZ operations in order to create our T-shape of entanglement. By
applying CZ operations to the known initial states of our four qubits
we can determine how this state is represented to find the results of
measurements.

|ψin〉 = CZ12CZ23CZ24 |ψT〉1 |+〉2 |+〉3 |φ4〉
= CZ21CZ32CZ24 |ψT〉1 |+〉2 |+〉3 |φ4〉

=
1
2
(|ψT〉1 (|0〉2 + |1〉2 Z1)(|0〉3 + |1〉3 Z2)(c |0〉3 + d |1〉3 Z3)

=
1
2
((|ψT〉1 |0〉2 + |ψT〉1 |1〉2 Z1)

(|0〉3 + |1〉3 Z2)(c |0〉3 + d |1〉3 Z3)

=
1
2
(|ψT〉1 |00〉23 + Z1 |ψT〉1 |01〉23

− (Z2 |ψT〉1 |10〉23 − Z1 |ψT〉1 |11〉23)(c |0〉4 + d |1〉4 Z3)

=
1√
2
(|ψT〉1 |0〉2 |+〉3 |φc〉4 + (Z1 |ψT〉1) |1〉2 |−〉3 (Z3 |φc〉4)

(34)

2.5 measurement based gate operation 12

In order to perform a CNOT operation using this state between the
target and control qubits we then measure qubits 1 and 2 in the basis
{ | +〉, | −〉 }. In the case of |+〉 measurement this results in:

1 〈+|ψin〉1234 =
1√
2
((a + b) |0〉2 |+〉3 |φc〉4

+ (a− b) |1〉2 |−〉4 (Z4 |φc〉4)) (35)

This state then becomes:

(|+〉 ⊗ |+〉) 〈ψin|1234 ac |00〉34 + bd |01〉34 + bc |10〉34 + ad |11〉34

= |out〉34 (36)

Which from equation (33) we can see is in fact the desired CNOT
with some additional operators applied. Therefore in order to recover
correct output we feed forward measurement outputs for the first two
qubits to obtain the output:

|outm1m2〉 = Xn2
T Zn1

T Xn1
C CNOT |ψT〉3 |φC〉4 (37)

2.5.3 Gate universality

The two gate operations here can be used to form a universal set of
gates [10]. This set can be expressed analogously to the more com-
monly used universal set of five gates in the circuit model, which is
demonstrated in [1] and shown in Figure 2. Therefore, if we can sim-
ulate these two gates as described here we can simulate any possible
measurement based gate.

2.5 measurement based gate operation 13

Figure 2: Universal set of quantum gates [1]

3
E R R O R C O R R E C T I O N

The next part of the simulation will be the error correction scheme. In
order to keep the program initially as simple as possible a variant of
Jaewoo Joo’s measurement based error correction scheme using two
auxilary qubits to create a ’triangle state’ instead of the ’pentagon
state’s used in Joo’s paper [2]. This error correction scheme is conve-
nient as it can be extended to larger size logical qubits easily so the
correlation between fault tolerance and qubit number can be exam-
ined.

3.1 logical qubits

The first step towards simulation of the error correction scheme for
measurement based quantum computation requires the definition of
a logical state which represents a quantum state for which the infor-
mation is distributed amongst multiple qubits. Following the work in
’Error - correcting one - way quantum computation with global en-
tangling gates’ [2] we establish a logical state based on three qubits,
rather than the five in the paper, to form a triangle state through three
CZ operations. In doing so we obtain the unitary operator that will
allow for conversion of three qubits in the + state to the logical + state.

Û(t) = exp

(
− iφ

(
1− σ1

z
2

1− σ2
z

2
1

+
1− σ1

z
2

1
1− σ3

z
2

+ 1
1− σ2

z
2

1− σ3
z

2

))
(38)

Expanding out this expression gives:

Û(t) = exp(− iφ
4
(31⊗ 1⊗ 1− 21⊗ σz ⊗ 1

− 2σz ⊗ 1⊗ 1− 21⊗ 1⊗ σz

+ σz ⊗ σz ⊗ 1 + 1⊗ σz ⊗ σz

+ σz ⊗ 1⊗ σz))

(39)

Applying Baker-Campbell-Hausdorff and Euler’s rule:

14

3.1 logical qubits 15

Û(t) = exp(−−3iφ
4

)(
cos(

iφ
2
)1⊗ 1⊗ 1 + i sin(

iφ
2
)1⊗ σz ⊗ 1

)
(

cos(
iφ
2
)1⊗ 1⊗ 1 + i sin(

iφ
2
)σz ⊗ 1⊗ 1

)
(

cos(
iφ
2
)1⊗ 1⊗ 1 + i sin(

iφ
2
)1⊗ 1⊗ σz

)
(

cos(
−iφ

4
)1⊗ 1⊗ 1 + i sin(

−iφ
4

)σz ⊗ σz ⊗ 1

)
(

cos(
−iφ

4
)1⊗ 1⊗ 1 + i sin(

−iφ
4

)1⊗ σz ⊗ σz

)
(

cos(
−iφ

4
)1⊗ 1⊗ 1 + i sin(

−iφ
4

)σz ⊗ 1⊗ σz

)

Using φ = π, we expand the terms of the equation and simplify

Û(t) =
1

2
√

2
exp(−−3iπ

4
)(i1⊗ σz ⊗ 1)

(i1⊗ 1⊗ σz)

(iσz ⊗ 1⊗ 1)

(1⊗ 1⊗ 1− i1⊗ σz ⊗ σz)(1⊗ 1⊗ 1− iσz ⊗ 1⊗ σz)

(1⊗ 1⊗ 1− iσz ⊗ σz ⊗ 1)

=
1

2
√

2
exp(−−3iπ

4
)(iσz ⊗ σz ⊗ σz)

(1⊗ 1⊗ 1− iσz ⊗ 1⊗ σz − i1⊗ σz ⊗ σz − σz ⊗ σz ⊗ 1)

(1⊗ 1⊗ 1− iσz ⊗ σz ⊗ 1)

=
1

2
√

2
exp(−−3iπ

4
)(iσz ⊗ σz ⊗ σz)

(1⊗ 1⊗ 1 + i1⊗ 1⊗ 1

− σz ⊗ σz ⊗ 1− iσz ⊗ σz ⊗ 1

− σz ⊗ 1⊗ σz − iσz ⊗ 1⊗ σz

− 1⊗ σz ⊗ σz − i1⊗ σz ⊗ σz

=
1− i
2
√

2
exp(−−3iπ

4
)(1⊗ 1⊗ σz + σz ⊗ 1⊗ 1

+ 1⊗ σz ⊗ 1− σz ⊗ σz ⊗ σz)

3.1 logical qubits 16

As exp(−−3iπ
4) = − 1+i√

2
we are left with:

Û |+++〉 = 1
2
(1⊗1⊗σz +σz⊗1⊗1+1⊗σz⊗1−σz⊗σz⊗σz) (40)

Applying this to the state |+++〉:

Û |+++〉 = 1
2
(|+−+〉+ |++−〉+ |−++〉 − |− −−〉) (41)

This allows us to find our logical plus state by applying the opera-
tor to three qubits in the plus state to form our ’triangle state’.

|+L〉 = CZ12CZ23CZ13 |+++〉 (42)

Applying the CZ operators in sequence:

|+L〉 = 1
2

CZ23CZ13(|+++〉+ |+−+〉+ |−++〉 − |− −+〉)

=
1
2

CZ23CZ13(|+〉 (|++〉+ |−+〉) + |−〉 (|++〉 − |−+〉))

=
1
4

CZ13(|+〉 (|++〉+ |+−〉+ |−+〉 − |−−〉

+ |−+〉+ |++〉+ |−−〉 − |+−〉)
+ |−〉 (|++〉+ |+−〉+ |−+〉 − |−−〉 − |−+〉
− |++〉 − |−−〉+ |+−〉))

=
1
2

CZ13(|+〉 (|++〉+ |−+〉) + |−〉 (|+−〉 − |−−〉))

=

√
2

2
CZ13(|+0+〉+ |−1−〉)

Which is the result from (20) with an additional CZ operation. Con-
tinuing by applying the final operator:

|+L〉 =
√

2
4

(|+0+〉+ |+0−〉+ |−0+〉 − |−0−〉

+ |−1−〉+ |+1−〉+ |−1+〉 − |+1+〉)

3.2 logical operations 17

Which simplifies to:

|+L〉 = 1
2
(|+−+〉+ |++−〉+ |−++〉 − |− −−〉) (43)

So states (41) and (43) are identical and applying three CZ opera-
tors to form a logical qubits is valid. By a similar method we can find
that:

|−L〉 = 1
2
(|+++〉 − |− −+〉 − |−+−〉 − |+−−〉) (44)

Then, by using the relations |0L〉 = |+L〉+|−L〉√
2

and |1L〉 = |+L〉−|−L〉√
2

we can find expressions for |0L〉 and |1L〉

|0L〉 = 1
2
(|0 ++〉 − |0−−〉+ |1 +−〉+ |1−+〉) (45)

|1L〉 = 1
2
(|0 +−〉 − |1 ++〉+ |1−−〉+ |0−+〉) (46)

But in order to use these qubits in computation we must first deter-
mine the equivalent logical gate operations.

3.2 logical operations

Logical gate operators represent the product of standard one qubit op-
erations that transform one logical state into the other. Now that we
have the four primary logical states that will be used for the model,
we can determine the logical operations required to transform be-
tween them. These logical states will be used to correct errors in the
state vector dependant upon the final states of the auxiliary qubits
used to detect errors.

3.2.1 Logical Z operation

In order to reconstruct the equivalent gate operations, we consider
the logical input and output states and then determine the operation
required to transform one to the other. Firstly, considering a Z opera-
tor we know that:

Z |+〉 = |−〉 Z |−〉 = |+〉
Z |0〉 = |0〉 Z |1〉 = − |1〉

3.2 logical operations 18

So we should expect that:

ZL |+L〉 = |−L〉 ZL |−L〉 = |+L〉
ZL |0L〉 = |0L〉 ZL |1L〉 = − |1L〉

Examining the logical + and − states it seems that each of the four
states that make up each logical state has a partner in the other logical
state that is opposite in sign.

|+L〉 = 1
2
(|+−+〉+ |++−〉+ |−++〉 − |− −−〉)

|−L〉 = 1
2
(− |−+−〉 − |−−+〉 − |+−−〉+ |+++〉)

Therefore it seems obvious to attempt to see if a product of three
Z operations will transform one logical state into another in order to
find the Z logical state.

Z1Z2Z3 |+L〉 = 1
2
(|−+−〉+ |− −+〉+ |+−−〉 − |+++〉)

= − |−L〉
(47)

Z1Z2Z3 |−L〉 = 1
2
(− |+−+〉 − |++−〉 − |−++〉+ |− −−〉)

= − |+L〉
(48)

From equations (47) and (48) it therefore seems likely that the logi-
cal Z operation for three qubits is −Z1Z2Z3. Testing this further with
the logical 0 and 1 states:

−Z1Z2Z3 |0L〉 = 1
2
(− |0−−〉+ |0 ++〉+ |1−+〉+ |1 +−〉) = |0L〉

(49)

−Z1Z2Z3 |1L〉 = 1
2
(|0−+〉+ |1−−〉− |1 ++〉+ |0 +−〉) |1L〉 (50)

Which further confirms that ZL = −Z1Z2Z3.

3.2 logical operations 19

3.2.2 Logical X operation

Continuing this process for the X operation, we should expect that:

XL |+L〉 = |+L〉 XL |−L〉 = − |−L〉
XL |0L〉 = |1L〉 XL |1L〉 = |0L〉

So we can similarly try three single qubit Pauli X operations to
determine the equivalent logical operation:

X1X2X3 |+L〉 = 1
2
(− |+−+〉 − |++−〉 − |−++〉 − |− −−〉)

= − |+L〉
(51)

X1X2X3 |−L〉 = 1
2
(− |+++〉 − |− −+〉 − |−+−〉+ |+−−〉)

= |−L〉
(52)

So can also conclude that XL = −X1X2X3.

3.2.3 Logical Hadamard operation

The Logical Hadamard operation should be such that:

HL |+L〉 = |0L〉 HL |−L〉 = − |1L〉
HL |0L〉 = |+L〉 HL |1L〉 = |−L〉

First let us try:

H1 |+L〉 = 1
2
(|0−+〉+ |0 +−〉+ |1 ++〉 − |1−−〉) (53)

However as our target is:

|0L〉 = 1
2
(|0 ++〉 − |0−−〉+ |1 +−〉+ |1−+〉)

3.2 logical operations 20

There seems to be a mismatch between the first qubit and the others
if we only apply the Hadamard to the first qubit, so we can attempt
to rectify this by also applying an X operation.

X1H1 |+L〉 = 1
2
(|1−+〉+ |1 +−〉+ |0 ++〉 − |0−−〉) = |0L〉 (54)

Which is the intended result, but when we try the same set of op-
erations on |−L〉 we find that the operations are not adequate alone.

X1H1 |−L〉 = 1
2
(|1 ++〉− |0−+〉− |0 +−〉− |1−−〉) = − |1L〉 (55)

However, if we apply a ZL operation to both sides this problem will
be rectified.

− Z1Z2Z3X1H1 |−L〉

=
1
2
(|1−−〉+ |0 +−〉+ |0−+〉 − |1 ++〉)

= |1L〉
(56)

Similarly:

− Z1Z2Z3X1H1 |+L〉

=
1
2
(|1 +−〉+ |1−+〉 − |0−−〉+ |0 ++〉)

= |0L〉
(57)

Thus the logical Hadamard gate is:

HL = −Z1Z2Z3X1H1 (58)

3.2.4 Logical rotation operation

Another gate type required for universal computation is the Z rota-
tion operation. Repeating the process used for the other logical oper-
ations, we should expect that:

3.2 logical operations 21

RL(ξ) |+L〉 = 1√
2

(
e
−iξ

2 |0L〉+ e
iξ
2 |1L〉

)
RL(ξ) |−L〉 = 1√

2

(
e
−iξ

2 |0L〉 − e
iξ
2 |1L〉

)
RL(ξ) |0L〉 = e

−iξ
2 |0L〉

RL(ξ) |1L〉 = e
iξ
2 |1L〉

The process of forming this operation is slightly long-winded com-
pared to the others, however the first step is simply to apply a normal
z rotation operation to the first qubit of a logical state.

Rz(ξ) |+L〉 = 1

2
√

2e
iξ
2

(|0−+〉+ |0 +−〉+ |0 ++〉 − |0−−〉

+ eiξ(|1−+〉+ |1 +−〉 − |1 ++〉+ |1−−〉))

Then a Z operation is applied to this first qubit.

Z1Rz(ξ) |+L〉 = 1

2
√

2e
iξ
2

(|0−+〉+ |0 +−〉+ |0 ++〉 − |0−−〉

− eiξ(|1−+〉+ |1 +−〉 − |1 ++〉+ |1−−〉))

Next we apply three Hadamard operations, but this requires first
some rearrangement:

Z1Rz(ξ) |+L〉 = 1

2e
iξ
2

(|0− 1〉+ |0 + 0〉 − eiξ(|1− 0〉 − |1 + 1〉))

Now applying the operators:

H1H2H3Z1Rz(ξ) |+L〉 = 1

2e
iξ
2

(|+1−〉+ |+0+〉− eiξ(|−1+〉− |−0−〉))

For the next step we apply a CNOT12, which is a controlled X op-
eration between qubits 1 and 2 such that the right hand side of the
equation becomes:

1

2
√

2e
iξ
2

(|01−〉+ |10−〉+ |00+〉+ |11+〉

− eiξ(|01+〉 − |10+〉 − |00−〉+ |11−〉))

3.2 logical operations 22

Then CNOT13 is similarly applied

1

2
√

2e
iξ
2

(|01−〉 − |10−〉+ |00+〉+ |11+〉

− eiξ(|01+〉 − |10+〉 − |00−〉 − |11−〉))

A Hadamard is then applied again to the first qubit

1

2
√

2e
iξ
2

(|+1−〉 − |−0−〉+ |+0+〉+ |−1+〉

− eiξ(|+1+〉 − |−0+〉 − |+0−〉 − |−1−〉))
(59)

Rearranging the right hand side gives:

1

4e
iξ
2

(|01−〉+ |11−〉 − |00−〉+ |10−〉

+ |00+〉+ |10+〉+ |01+〉 − |11+〉
− eiξ(|01+〉+ |11+〉 − |00+〉+ |10+〉
− |00−〉 − |10−〉 − |01−〉+ |11−〉))

Re-factorising this expression then allows us to obtain the states of
logical 0 and logical 1, demonstrating that the rotation applied to the
first qubit has been applied to all three qubits. Thus this process can
be used to encode information states into the logical qubits.

1

2
√

2e
iξ
2

(− |0−−〉+ |1 +−〉+ |0 ++〉+ |1−+〉

− eiξ(− |0−+〉+ |1 ++〉 − |0 +−〉 − |1−−〉))

=
1√
2
(e−iξ |0L〉+ eiξ |1L〉)

(60)

3.2.5 Logical controlled Z operation

The final essential building block for logical scheme is the ability to
connect two logical qubits together through a logical controlled Z
operation. The desired result for the operation is:

CZL
AB |+L〉A |+L〉B =

1√
2
(|0L〉A |+L〉B + |1L〉A |−L〉B) (61)

3.3 entangled three qubit states 23

However, this state can be achieved with only CZ operations.

3

∏
i,j=1

CZaibj |+
L〉A |+L〉B

=
1
2
(|+L〉A |+L〉B + |+−L〉A |+L〉B

+ |+L〉A |−L〉B − |−L〉A |−L〉B)

=
1√
2
(|0L〉A |+L〉B + |1L〉A |−L〉B)

This series of operators is difficult to demonstrate explicitly, how-
ever the state can be formed from a few more simple operations as
will be shown in the next section.

3.3 entangled three qubit states

In order to demonstrate how a logical CZ state can be achieved through
the a more basic method, we consider six qubits each in the + state
separated onto two groups of three, a and b, which will each repre-
sent a logical qubit in the final state.

|+〉a1
|+〉a2

|+〉a3
|+〉b1

|+〉b2
|+〉b3

First, CZ operations are applied in each section to form the (20)
state labelled |ghz+〉 states.

CZa1a2 CZa1a3 CZb1b2 CZb1b3 |+〉a1
|+〉a2

|+〉a3
|+〉b1

|+〉b2
|+〉b3

=
1
2
[|0〉a1

|+〉a2
|+〉a3

+ |1〉a1
|−〉a2

|−〉a3
]

[|0〉b1
|+〉b2

|+〉b3
+ |1〉b1

|−〉b2
|−〉b3

]

= |ghz+〉a1a2a3
|ghz+〉b1b2b3

(62)

Then the qubits denoted as 1 in both sections are entangled by a
CZ operation to form a state denoted as |G+

2 〉.

CZa1b1 |ghz+〉a1a2a3
|ghz+〉b1b2b3

=
1
2
[|0〉a1

|+〉a2
|+〉a3

[|0〉b1
|+〉b2

|+〉b3
+ |1〉b1

|−〉b2
|−〉b3

]

+ |1〉a1
|−〉a2

|−〉a3
[|0〉b1

|+〉b2
|+〉b3

+ |1〉b1
|−〉b2

|−〉b3
]]

= |G+
2 〉

(63)

3.3 entangled three qubit states 24

Next, Hadamard operations are applied to the first qubits in each
section which produces an entangled state that is equivalent to apply-
ing CZ operations between each qubit in opposite sections.

|GH
2 〉 = (Ha1 ⊗ Hb1) |G

+
2 〉

=
1
2
[|+〉a1

|+〉a2
|+〉a3

|+〉b1
|+〉b2

|+〉b3

+ |+〉a1
|+〉a2

|+〉a3
|−〉b1

|−〉b2
|−〉b3

+ |−〉a1
|−〉a2

|−〉a3
|+〉b1

|+〉b2
|+〉b3

− |−〉a1
|−〉a2

|−〉a3
|−〉b1

|−〉b2
|−〉b3

]

(64)

Finally, CZ operations are applied between each qubit in their re-
spective sections similarly to having the operator (40) applied. This
will produce the logical CZ state specified in the expression (61).

CZa1a2 CZa2a3 CZa3a1 CZb1b2 CZb2b3 CZb3b1 |G
H
2 〉

=
1
2
[(|+−+〉+ |++−〉+ |−++〉 − |− −−〉)a1a2a3

(|+−+〉+ |++−〉+ |−++〉 − |− −−〉)b1b2b3

+ (|+−+〉+ |++−〉+ |−++〉 − |− −−〉)a1a2a3

(|+++〉 − |− −+〉 − |−+−〉 − |+−−〉)b1b2b3

+ (|+−+〉+ |++−〉+ |−++〉 − |− −−〉)a1a2a3

(|+++〉 − |− −+〉 − |−+−〉 − |+−−〉)b1b2b3

− (|+++〉 − |− −+〉 − |−+−〉 − |+−−〉)a1a2a3

(|+++〉 − |− −+〉 − |−+−〉 − |+−−〉)b1b2b3]

=
1
2
[|+L〉a1a2a3

|+L〉b1b2b3
+ |+L〉a1a2a3

|−L〉b1b2b3

+ |−L〉a1a2a3
|+L〉b1b2b3

− |−L〉a1a2a3
|−L〉b1b2b3

]

(65)

This expression can be simplified to:

=
1√
2
(|0L〉a1a2a3

|+L〉b1b2b3
+ |1L〉a1a2a3

|−L〉b1b2b3
) (66)

Now that we have an expression for the logical CZ state we have
the first step towards demonstration of the logical qubit system as a
means towards error correction.

3.3 entangled three qubit states 25

3.3.1 Demonstration of the validity of simpler operations

So far the validity of equation (64) has not been demonstrated. In
order display its correct, we can perform CZ operations on six plus
states.

CZa1b1 CZa1b2 CZa1b3

CZa2b1 CZa2b2 CZa2b3

CZa3b1 CZa3b2 CZa3b3

|+〉a1
|+〉a2

|+〉a3

|+〉b1
|+〉b2

|+〉b3

Applying the C-Z operations of the same index numbers yields

CZa1b2 CZa1b3 CZa2b1

CZa2b3 CZa3b1 CZa3b2

1
8
[|++〉+ |−+〉+ |+−〉 − |−−〉]a1b1

[|++〉+ |−+〉+ |+−〉 − |−−〉]a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

Now applying the first ’diagonal’ CZ operations between the qubits
indexed as a1 and b2 and expanding the brackets:

3.3 entangled three qubit states 26

CZa1b3 CZa2b1

CZa2b3 CZa3b1 CZa3b2

1
16

[[|++++〉+ |−+++〉+ |+++−〉 − |−++−〉]

+ [|+++−〉+ |−++−〉+ |++++〉 − |−+++〉]
+ [|++−+〉+ |−+−+〉+ |++−−〉 − |−+−−〉]
− [|++−−〉+ |−+−−〉+ |++−+〉 − |−+−+〉]

+ [|+−++〉+ |− −++〉+ |+−+−〉 − |−−+−〉]
+ [|+−+−〉+ |− −+−〉+ |+−++〉 − |− −++〉]
+ [|+−−+〉+ |− −−+〉+ |+−−−〉 − |−−−−〉]
− [|+−−−〉+ |−+−−〉+ |+−−+〉 − |− −−+〉]

+ [|−+++〉+ |++++〉+ |−++−〉 − |+++−〉]
+ [|−++−〉+ |+++−〉+ |−+++〉 − |++++〉]
+ [|−+−+〉+ |++−+〉+ |−+−−〉 − |++−+〉]
− [|−+−−〉+ |++−−〉+ |−+−+〉 − |++−+〉]

− [|− −++〉+ |+−++〉+ |− −+−〉 − |+−+−〉]
− [|− −+−〉+ |+−+−〉+ |− −++〉 − |+−++〉]
− [|− −−+〉+ |+−−+〉+ |− −−−〉+ |+−−−〉]
+ [|− −−−〉+ |+−−−〉+ |− −−+〉 − |+−−+〉]]a1b1a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

Half of the terms here will cancel leaving:

CZa1b3 CZa2b1

CZa2b3 CZa3b1 CZa3b2

1
8
[[|++++〉+ |+++−〉+ |−+−+〉 − |−+−−〉]

+ [|+−++〉+ |+−+−〉+ |− −−+〉 − |− −−−〉]
+ [|−+++〉+ |−++−〉+ |++−+〉 − |++−−〉]
+ [|+−−−〉 − |+−−+〉 − |− −++〉 − |− −+−〉]]a1b1a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

Using the relations |0〉 =
√

2(|+〉+ |−〉) and |0〉 =
√

2(|+〉+ |−〉)
this expression can be further simplified:

3.3 entangled three qubit states 27

CZa1b3 CZa2b1

CZa2b3 CZa3b1 CZa3b2√
2

8
[[|0 +++〉+ |0 ++−〉+ |0 +−+〉 − |0 +−−〉]

+ [|1−++〉+ |1−+−〉 − |1−−+〉 − |1−−−〉]]a1b1a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

and:

CZa1b3 CZa2b1

CZa2b3 CZa3b1 CZa3b2

1
4
[|0 ++0〉+ |0 +−1〉+ |1−+0〉 − |1−−1〉]a1b1a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

Applying the second "diagonal" between the qubits indexed as a2

and b1 now gives

CZa1b3 CZa2b3

CZa3b1 CZa3b2

1
8
[|0〉 [|++〉+ |−+〉+ |+−〉 − |−−〉] |0〉

+ |0〉 [|+−〉+ |−−〉+ |++〉 − |−+〉] |1〉
+ |1〉 [|−+〉+ |++〉+ |−−〉 − |+−〉] |0〉
− |1〉 [|−−〉+ |+−〉+ |−+〉 − |++〉] |1〉]a1b1a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

Expanding these brackets produces a large number of terms (64),
however most terms will cancel yielding:

CZa1b3 CZa2b3

CZa3b1 CZa3b2

1
4
[|++++〉+ |+−+−〉+ |−+−+〉 − |− −−−〉]a1b1a2b2

[|++〉+ |−+〉+ |+−〉 − |−−〉]a3b3

3.3 entangled three qubit states 28

3.3.2 Second set of diagonal operations

Next we apply the CZ operator between qubits a1 and b3

CZa2b3 CZa3b1 CZa3b2

1
4
[|+++〉b1a2b2

[CZ |++〉 (|+〉

+ |−〉) + CZ |+−〉 (|+〉 − −)]a1b3a3

+ |−+−〉b1a2b2
[CZ |++〉 (|+〉

+ |−〉) + CZ |+−〉 (|+〉 − −)]a1b3a3

+ |+−+〉b1a2b2
[CZ |−+〉 (|+〉

+ |−〉) + CZ |−−〉 (|+〉 − −)]a1b3a3

− |−−−〉b1a2b2
[CZ |−+〉 (|+〉

+ |−〉) + CZ |−−〉 (|+〉 − −)]a1b3a3]

CZa2b3 CZa3b1 CZa3b2√
2

4
[|+++〉+ |−+−〉]b1a2b2 [|+0+〉+ |−1−〉]a1b3a3

+ [|+−+〉 − |− −−〉]b1a2b2 [|+1−〉+ |−0+〉]a1b3a3

Expanding these brackets and rearranging the order of the qubits
in the kets gives:

CZa2b3 CZa3b1 CZa3b2√
2

4
[|+++++0〉+ |−+−++1〉

+ |+++−−0〉+ |−+−−−1〉
+ |+−−++1〉+ |− −+++0〉
− |+−−−−1〉 − |− −+−−0〉]a1a2a3b1b2b3

Using the relations:

CZ |+0〉 = |+0〉
CZ |−0〉 = |−0〉
CZ |+1〉 = |−1〉
CZ |−1〉 = |+1〉

3.3 entangled three qubit states 29

We can now apply the CZ operator between qubits a2 and b3

CZa3b1 CZa3b2√
2

4
[|+++++0〉+ |− −−++1〉

+ |+++−−0〉+ |− −−−−1〉
+ |++−++1〉+ |− −+++0〉
− |++−−−1〉 − |− −+−−0〉]a1a2a3b1b2b3

3.3.3 Final diagonals

By re-factorising the expression such that |0〉 and |1〉 terms are being
operated on we can further mitigate the need for complex expressions.
Hence we rearrange to get:

CZa3b1 CZa3b2√
2

4
[|++ 0 +++〉+ |− − 0 +++〉

+ |++ 1−−+〉 − |− − 1−−+〉
+ |++ 1 ++−〉+ |− − 1 ++−〉
+ |++ 0−−−〉 − |−− 0−−−〉]a1a2a3b1b2b3

Now the CZ operator between qubits a3 and b1 can be easily ap-
plied:

CZa3b2√
2

4
[|++ 0 +++〉+ |− − 0 +++〉

+ |++ 1 +−+〉 − |− − 1 +−+〉
+ |++ 1−+−〉+ |− − 1−+−〉
+ |++ 0−−−〉 − |−− 0−−−〉]a1a2a3b1b2b3

Finally, applying the CZ operator between qubits a3 and b2

3.4 general encoding 30

√
2

4
[|++ 0 +++〉+ |− − 0 +++〉

+ |++ 1 +++〉 − |− − 1 +++〉
+ |++ 1−−−〉+ |− − 1−−−〉
+ |++ 0−−−〉 − |−− 0−−−〉]a1a2a3b1b2b3

and this expression is nothing more than:

1
2
[|++++++〉+ |− −−+++〉

+ |+++−−−〉 − |−−−−−−〉]a1a2a3b1b2b3

Thus demonstrating the validity of equations (63) and (64) in the
formation of a logical CZ state.

3.4 general encoding

The operation to initialise a CZ state in the previous section is, how-
ever, specific for an initial state in the first qubit consisting of three
|+〉 state qubits. In order to realise a generalised logical state and
perform a CZ operation, we require usage of the logical rotation op-
erator and the the CZ operations required to transform three |+〉 state
qubits into the |+L〉 state.

This process will have an identical effect to the encoding and de-
coding circuits for initialising the error correction described in [2]. By
combining this with the procedures described in equations (63) and
(64), we can effectively perform the full quantum error correction cir-
cuit described in [2].

3.5 error

The functionality of this error correction scheme comes from the de-
tection of states in the auxiliary qubits. After the formation of the
logical cluster state, there is an additional decoding step consisting
of another set of CZ operators and then the conjugate of the part of
the rotation operator. The measured states of the auxiliary qubits will
then be in the form of a binary value which indicates the kind of log-
ical X and logical Z operations required to correct the fault. For the
case of 5 qubits, the table from Joo’s paper [2] is shown in figure 3.

This process is also represented with a corresponding circuit model
in Joo’s paper [2], included here in figure 4 to facilitate understanding
of the table.

3.5 error 31

Figure 3: Error correction table based on outcomes in auxiliary qubits [2]

Figure 4: Full error correction circuit [2]

3.6 higher complexities 32

3.6 higher complexities

One of the advantages of this error correction scheme is that it can
be easily scaled for the encoding of higher numbers of qubits in each
logical state. The conversion for this is simply to scale all operators
that act on all three qubits to operate on the number of qubits in the
new logical state. The effect of this should be a higher degree of fault
tolerance when the error correction scheme is applied.

4
S I M U L AT I O N O F O N E WAY Q U A N T U M
C O M P U TAT I O N

For the next part of the project, a simulation was to be created that
would allow for investigation of levels of fault tolerance for different
logical qubits in the error correction scheme through Monte Carlo
methods. The program would provide simulations of the single gate
operations with randomised errors being introduced to the state vec-
tor of the system between the encoding and measurement steps. With
these randomised errors and by comparing the outputs of the pro-
gram with expected results, the fault tolerance of each set-up could
be determined through repeated running of the program and collec-
tion of data. By then comparing the fault tolerance between various
sizes of logical qubit in ’triangle’ or ’pentagon’ states etc, a correlation
between fault tolerance and logical qubit size could be established to
aid in choice of error correction scheme based on physical parameters
of a system.

4.1 set-up

The first step of any simulation is, of course, to establish how the prob-
lem will be solved. In this regard, the simulation was first planned in
pseudo code and the relevant components sketched out. This plan
was somewhat ambitious as it encompassed a scheme for universal
applications of one way quantum computation with the described er-
ror correction scheme. Though much of this plan was not completed,
its contents are described in this section.

4.1.1 Resources used

For the simulation fortran 95 was chosen as an appropriate language
due to it’s scalability and ability to be broken up into modules. Details
of the compilers, libraries and system used for simulation will be
included in Appendix B.

Fortran 95 also contained standard functions to call for random
numbers that were required for both measurement results and the
addition of random errors as well as the ability to determine array
sizes intrinsically, allowing for a tidier coding of subroutines.

33

4.1 set-up 34

4.1.2 Subroutines

A key requirement for the structure of any program was that it would
be comprised of subroutines that handled the various steps of the op-
eration of the modelled computer such that these subroutines could
be easily rearranged in the main program to simulate any required
topological structure. For example, the various single qubit opera-
tions required to satisfy universal computation in [1] can be simu-
lated using the same physical system of a short chain of qubits but
with different eigenbases for measurements. Hence in the simulation
of a chain of spins the program was designed such that the required
measurement operations could be read from a file allowing for any
single qubit gate to be simulated with the same program.

Additionally, the two qubit CZ operation was written such that it
could be performed between any two qubits in the state vector of
the system, allowing it to be used in more complicated programs
that would simulate the systems from the triangle states required for
the basic implementation of the error correction code to the 8-qubit
controlled phase gates.

As such every initialisation and measurement operation was set
up to be self contained into one of three modules. The CZ operation
module, the measurement module and an additional module that
contained several linear algebra procedures required for the program
to function. The modular structure also allowed for dynamic array
allocation to occur at the top level of the program as array sizes could
be passed to the various modules without need to include array sizes
as extra arguments in calls to subroutines. This meant that all calls to
internal subroutines were reasonably understandable and concise in
the coding.

4.1.3 Libraries

As this program was primarily structured around matrices and linear
algebra, extensive use of the BLAS external library as well as the LA-
PACK library [11]. Not only would this make some calculation easier
to code, but also meant that the program had some capacity for scal-
ability onto parallel architectures given the structure of the routines
in the library. Whenever possible BLAS was used in addition to in-
trinsic Fortran calls for dot products or matrix multiplication with
preprocessor statements allowing the option of compiling without ex-
ternal libraries. However, as the program developed it became more
dependant on these libraries and so is no longer functional without
them.

4.2 cz operation 35

4.1.4 Precision

As the program relied on numerical solutions to systems of linear
equations, precision in variables was tantamount to functionality. As
such IEEE 754 double precision [12] was used in the program as stan-
dard in all real and complex variables, arrays and conversion func-
tions. Because of this machine error was extremely low for all runs of
the program, manifesting itself only in null values. While these null
values may look untidy in current outputs for the program, they cur-
rent provide a reasonable guarantee of numerical accuracy and can
be easily cleared up in later versions through a rounding step before
writing to file.

However, this would mean that each double precision value in the
state vectors of the subroutine or in operation matrices would be us-
ing 64 bits for each value stored. Hence the size of the system would
quickly cause the memory usage to expand drastically. For a one di-
mensional chain of qubits, this is not a problem as qubits can be
removed from the state vector after measurement, resulting in max-
imum memory usages of 128 × 22 for the state vector. In the case
of simulation of the quantum Fourier transform described in [1], at
least 20 qubits would be required, causing memory requirements of
128× 220 bits, which would be around 17 megabytes. While this is eas-
ily manageable for single qubits, incorporation of the triangle states
as an error correction code would require around 18,000 petabytes, a
value clearly infeasible for computation as even the top supercomput-
ers have access to even one petabyte [13] TOP 500 super computers.

4.2 cz operation

The first building block subroutine implemented into the program
was a CZ operation subroutine. This subroutine would take a state
vector and apply a CZ operation based on integer values of control
and target bits. In this way, CZ operations could be achieved between
any two qubits in the state vector, satisfying the requirements for ini-
tialisation of both measurement based single qubit gates and triangle
states for error correction.

4.2.1 Kronecker Product routine

In order to generate the matrix describing the CZ operation between
two qubits in the state vector, a subroutine was adapted from previ-
ous work [14], which was updated for Fortran 95’s ability to intrinsi-
cally determine the size of an array. This subroutine for a Kronecker
product was necessary to code as an equivalent was not found in the
common external Fortran libraries.

4.2 cz operation 36

Using this subroutine CZ matrices were generated from 2× 2 iden-
tity and Pauli-z matrices based on the the unitary operator (19).

Listing 1: CZ generation main algorithm

!Loops over values 1 to 4 with J

!Reflective of the unitary operator which has 4 terms

do j = 1, 4

!Allocates the secondary work matrix into the initial size

!for Kronecker product multiplication

Allocate(out_matrix(2, 2))

!Performs a check to see if the first matrix in the order

of

!multiplication corresponds to a control or target

!if they do, assigns the appropriate matrix dependant

!upon the value of j.

!Otherwise assigns the identity matrix

if((trgt.eq.1).and.((j.eq.2).or.(j.eq.4))) then

out_matrix = z_matrix

elseif((ctrl.eq.1).and.((j.eq.3).or.(j.eq.4))) then

out_matrix = z_matrix

else

out_matrix = identity

end if

!Loops over each individual qubit

!This will produce a matrix of appropriate size for each

!term of the unitary operator

do i = 2, n

!Assigns a size value to the work matrix dependent

!on the step in the loop, thus allowing it

!to contain the appropriate size of matrix at this step

Allocate(work_matrix(2**(i-1), 2**(i-1)))

!Assigns the work matrix the value of the output matrix

!Takes the value from the output of last step

!Allowing output matrix to be deallocated

work_matrix = out_matrix

!Deallocate output matrix

Deallocate(out_matrix)

!Allocates new size to the output matrix

!New size is appropriate for storage of

!Kronecker product between work matrix and a 2x2 matrix

Allocate(out_matrix(2**i, 2**i))

!Determines whether the next operator of the

multiplication

4.2 cz operation 37

!Will be a control or target qubit, depending on the

term of U

!Assigns the appropriate value if so for kronecker

products

!Otherwise uses the identity matrix for the kronecker

product

if((ctrl.eq.i).and.((j.eq.3).or.(j.eq.4))) then

call kronecker_product_complex(work_matrix,

z_matrix, out_matrix)

elseif((trgt.eq.i).and.((j.eq.2).or.(j.eq.4))) then

call kronecker_product_complex(work_matrix,

z_matrix, out_matrix)

else

call kronecker_product_complex(work_matrix,

identity, out_matrix)

end if

!Deallocates the work matrix ready

!For allocation in next loop

Deallocate(work_matrix)

!Ends do loop for the jth term of the Operator

end do

!Determines which term of operator the loop is on

!If j is four, removes output from cz_matrix

!otherwise adds output to cz_matrix

!Reflective of signs of unitary operator

if(j.eq.4) then

cz_matrix = cz_matrix - out_matrix

else

cz_matrix = cz_matrix + out_matrix

end if

!Deallocates out matrix for next loop of j

Deallocate(out_matrix)

end do

4.2.2 Improvements

As the CZ operation matrix is always diagonal, the subroutine could
be easily improved to calculate and store the operation matrix as a
one dimensional array. This would allow the use of a simpler Kro-
necker product routine designed only for vectors, but could also make
calls to other subroutines unnecessary as the calculation of the oper-
ator would be reasonably trivial with a standard formula for gener-
ation that required only multiplication of negative numbers into the
operator at the appropriate places.

4.3 other qubit operations 38

Additionally, the array could be downscaled to integer values and
then converted to double precision only when directly applied to the
state vector, making savings in computation time and memory usage.

It would also be possible to generate CZ operators for the formation
of triangle states similar to the unitary operator in (41). By generat-
ing these through a separate routine, the application of triangular CZ
states shown in the equation (65) for the encoding of the logical clus-
ter state, would be optimized further. This operation could even be
generalised to satisfy pentagonal, heptagonal or any other alternative
formation of logical qubits in the error correction scheme.

4.3 other qubit operations

One requirement for the modules of the program was that circuit
model style operations would need to be performed in order to en-
code the error correction scheme into the system.

4.3.1 Pauli Z Operation

While a Pauli Z operation was not coded into the program for sin-
gle qubits, such a routine would be reasonably simple to implement
using a simple modification of the CZ operation subroutine. Funda-
mentally the CZ operation includes two single qubit Z operations
so by removing one of the nested loops the desired effect could be
achieved. This subroutine could also be optimised as a diagonal ma-
trix or as integer values in a similar way to the CZ operation, min-
imising memory usage and computational time.

4.3.2 Hadamard Operation

Similarly to the Pauli Z operation, the error correction scheme relies
on the application of multiple Hadamard operations. Unlike the Z op-
eration, this operator can be required to be applied to multiple qubits
at the same time and as such requires a more complicated subroutine.
Using the same Kronecker product subroutine it would be possible
to form an operator that acts on an array of integers representing
qubits to be operated upon. This way any possible error protection
configuration could easily be handled by the same subroutine.

While this subroutine could not be held as a single dimensional ar-
ray like the CZ and Z operations, it could still be stored as an integer,
provided a real value be held as an additional variable to reflect the
constant value multiplied by the matrix.

4.4 measurement 39

4.3.3 Logical Operations

In order to properly simulate the error correction protocols, the logi-
cal operators that are applied for both encoding and error correction
need to be incorporated. These operators would be easily handled in
the same way as the other operators described earlier as they can be
seen to be components of the logical operators. As a result, the logical
operator subroutines would operate at a higher level in the program,
making use of the basic operators as resources.

The key condition in designing a subroutine to function such that
it can be used for larger logical qubits in order to compare the fault
tolerance correlation between logical qubit sizes. This would be trivial
to code however as it would just require the number of loops used to
apply operations to all of the qubits comprising the logical qubits to
be set in the argument of the subroutine rather than hard coded into
the program.

4.4 measurement

Obviously the most vital subroutine for the simulation of the opera-
tion of a measurement based quantum computation scheme is the act
of measurement itself. Fundamentally, this subroutine must handle
the functionality of any quantum algorithms whilst also supporting
certain metaphysical principles and assumptions [15]. The program
was designed to reflect the same metaphysical assumptions used in
the algebraic model earlier and hence the model for measurement
used earlier was also applied in the program.

4.4.1 Random measurement in basis

To reflect the random nature of measurement outcomes in each basis,
the intrinsic random number generator in Fortran 95 was employed.
This provided a random double precision number between 0 and 1

which was then rounded to the nearest integer value with the intrinsic
function NINT(). This provided a simple way to deal with random
measurement outcomes whilst also allowing for fixed outcomes in
debugging as the default seed for the random number function is
consistent, providing identical outcomes on each calling. Whilst seed
generation for proper running of the program was explored, the time
limited nature of programming meant that such features were never
incorporated into the program at large, but it is likely that a seed
generation library from the operating system would have been used
or a custom one created based on system time.

The integer values representing the outcomes of the measurements
were then written to file where they could be retrieved by the subrou-

4.4 measurement 40

tine handling the feed-forward of measurement outcomes at the end
of the program.

4.4.2 Pauli bases measurement

In order to easily model CNOT, Hadamard and π/2 phase gates,
a subroutine for measurement in the three Pauli bases which corre-
spond to the eigenvectors of the 2× 2 Pauli matrices was incorporated
into the program. As these measurement bases were commonly used
in almost all qubit gates it made sense to have them hard coded into
the program instead of using a single generalised measurement rou-
tine

σx+ =
1√
2

(
1

1

)
, σx− =

1√
2

(
1

−1

)
,

σy+ =
1√
2

(
1

i

)
, σy− =

1√
2

(
1

−i

)
,

σz+ =

(
1

0

)
, σz− =

(
0

1

)
.

(67)

In order to keep the programming concise, all three kinds of basis
were included into the same subroutine which was controlled by a sin-
gle character in the argument of the subroutine. This character would
then be recorded in a file containing data about the measurements
that could be used to calculate the final states in the feed forward
subroutine. Currently however the program uses the phase directly,
but this could be optimised in future iterations by hard coding the
phase amounts of the Pauli bases into the feed forward routine. Un-
fortunately the Pauli Y and Pauli Z basis measurements do not work
in the program when it comes to the final feed forward of measure-
ment because of an error with the phase of the basis when it comes to
feed forward of measurements to obtain the final state, so this change
might even help alleviate that problem.

4.4.3 Arbitrary measurement

In addition the the Pauli bases measurements, a generalised measure-
ment of arbitrary phase was also required for the program to imple-
ment the general rotation and z rotation single qubit gates. The sub-
routine for this process was very similar to the Pauli measurement
subroutine aside from the inclusion of a variable measurement phase
in the arguments of the subroutine and a general rotation vector re-
placing the eigenvectors of the Pauli bases.

The subroutine, like the Pauli measurement subroutine, recorded
the variable phase amount to a file so that it could be used in the

4.5 decomposition 41

feed forward subroutine as well as multiplying the result of the in-
ner product of the measurement vector and the measured qubit state
vector by the global state vector. Potentially this subroutine could be
consolidated into the Pauli measurement subroutine through the use
of the control character, likely with ’R’ signifying a custom phase, but
this is yet to be performed.

4.4.4 Feed Forward

The final necessary component of the measurement scheme consisted
of a subroutine to feed forward measurement outcomes to recover
the desired state at the end of the measurements. This subroutine per-
formed the functionality of equation (32) for the single qubit states.

In order to achieve this result, the subroutine read the measure-
ments performed over the course of the program in order and then
applied (32) for each measurement, leading to accurate results.

The subroutine also has the functionality of being able to decom-
pose larger state vectors in order to apply the feed forward results to
specific qubits, but this is feature is currently unfinished.

4.4.5 Multiple Outputs

One of the weaknesses of the current subroutine to handle the feed
forward of measurements is that it cannot deal with output state vec-
tors consisting of multiple qubits simultaneously. For example, in the
output state of the CNOT gate in equation (37), a series of decoding
operations are required to be performed on two qubits at once, which
the subroutine would not be able to handle.

Fortunately this is only a minor problem as the error correction
scheme only requires a single output qubit and with sufficient time
the subroutine could be updated to deal with such problems if deemed
necessary.

4.5 decomposition

One of the critical elements to the functionality of the program was
the ability to decompose the global state vector into individual qubit
states in order for both the simulated measurement to be processed
and the final state of the qubit to be determined. This required a
reversing of the Kronecker product routine used to generate the state
vector which presented a formidable challenge computationally.

While Kronecker products are not directly reversible, it is possible
to determine a ’canonical’ result for certain matrices. The principle
behind this relies upon the relation between the Kronecker product

4.5 decomposition 42

and the vectorisation operator. Considering the vector W which is a
Kronecker product of two real vectors U and V:

W = V ⊗U = vec(UVT) (68)

Vectorisation is a process which is easily reversed, so the vectors
U and V can be recovered by decomposition of the resulting matrix.
Note that for complex vectors VT becomes VH which represents the
conjugate transpose of V.

UVT = vec−1(W) (69)

Unfortunately, there are a wide range of possible decompositions,
so this is where a canonical decomposition must be decided upon in
order to progress further.

4.5.1 Rank decomposition

The first subroutine developed to perform this decomposition was
a simple rank 1 decomposition. It was originally thought that this
would be sufficient in all cases as the Kronecker product of two vec-
tors would always be rank one. However this was short-sighted as the
application of the CZ operation modified the rank of the state vector,
a phenomenon which seems to be representative of the entanglement
induced in the system.

The algorithm worked by pulling the first non-zero column of the
matrix formed from the inverse vectorisation of W and normalising
it. Then the algorithm divided each value of the first non-zero row by
the new normalised values to obtain the other vector.

For a rank 1 state vector of pure such as |00〉 the algorithm was
successful, but when encountering mixed states, the algorithm could
not handle the input and returned null values. This was obviously
unacceptable as the CZ operation will always make mixed states out
of pure input states.

Listing 2: Rank decomposition algorithm

!Perform an inverse of the vec() operator by reshaping

!vector A into a matrix of dimensions n x o

B = TRANSPOSE(RESHAPE(A, (/ o, n /)))

do i = 1, o

do j = 1, n

if(B(j, i) /= 0.0_dp) then

C(j) = B(j, i)

exit

4.5 decomposition 43

else

continue

end if

end do

end do

!Normalise

!Calculate length

do i = 1, n

magnitude = magnitude + C(i)*C(i)

end do

magnitude = sqrt(magnitude)

!Divide components by length

C = C / magnitude

do i = 1, o

do j = 1, n

if(C(j) /= 0.0_dp) then

D(i) = (1.0_dp/(C(j))) * B(j, i)

exit

else

continue

end if

end do

end do

4.5.2 Single value decomposition

As the rank decomposition was not a sufficient way to canonically de-
compose the matrix, the single value decomposition (SVD) was cho-
sen as an alternative. As this was an M× N decomposition it would
allow for particular qubits to be determined, compared to something
like the eigen-decomposition which would only work with square
matrices and thus be only able to break the state vector in half.

Fortunately, unlike the rank decomposition there are plenty of avail-
able libraries for single value decomposition. For the simulation the
double precision complex general decomposition routine zgesvd was
chosen from the LAPACK library as it both complied with the estab-
lished IEEE 754 precision standard and allowed for decomposition of
a general matrix.

However, the SVD is a little more complicated than the rank de-
composition as the matrix is broken into three parts. In the case of a
complex matrix these consist of a diagonal matrix Σ of the singular

4.5 decomposition 44

values σi of the matrix and two matrices U and V composed of rows
and columns of vectors such that:

M = UΣVH (70)

When performing this decomposition in the program the resulting
vectors U and VH were assumed to be the summations of the rows
or columns of matrices U and V respectively, while the i-th rows of
U were multiplied by the corresponding single values σi.

The routine was tested with the application of a pauli X basis mea-
surement on a pair of two qubits initialised in the |+〉 state before
having the CZ operation applied. The resulting state vector of this
initialisation was:

W =

1
2
1
2
1
2

− 1
2

 (71)

So when inverse vectorisation was applied this became:

M =

(
1
2

1
2

1
2 − 1

2

)
(72)

When entered into the subroutine the output was:

U =

− 1√
2
− 1√

2

− 1√
2

1√
2

 Σ =

 1√
2

0

0 1√
2

 VH =

(
−1 0

0 −1

)
(73)

So the vectors U and V became:

U =

 2√
2

0

V =

 1√
2

1√
2

 (74)

When the measurement in the Pauli X basis was applied, in case
one:

|+〉 〈+|U〉 ⊗ |V〉

= |+〉 (1√
2

2√
2
〈0|0〉)⊗ |V〉

= |+〉 ⊗ |V〉
(75)

4.6 error 45

Feeding the measurement result forward to determine the output
state then gives:

e0X0HR0 |V〉 = H

 1√
2

1√
2

 = |0〉 (76)

Similarly for the other measurement outcome:

e0X1HR0 |V〉 = XH

 1√
2

1√
2

 = |1〉 (77)

These outcomes match the expected outcomes for measurements of
the qubit in the pauli X basis which is easily seen by looking measure-
ment of the state expressed in the form described in equation (16). In
case 1:

〈+| 1√
2
(|+0〉+ |−1〉) = |0〉 = H |+〉 (78)

And in case 2:

〈−| 1√
2
(|+0〉+ |−1〉) = |1〉 = XH |+〉 (79)

Unfortunately the decomposition has not been tested for larger or
more complex state vectors due to time constraints. However, it seems
like there will be certain matrices which will throw up errors due to
the multiplication of zero values or through the summation of rows
and columns being zero, this could be fixed by performing multi-
ple decompositions until a satisfactory decomposition for which zero
values are minimised is achieved, but this would take extra compu-
tational resources and be mathematically untidy. In this regard, it
seems that there must be a better way to reconstruct the vectors from
the decomposition matrices but so far this remains unclear.

4.6 error

One of the crucial functionalities a completed program would be the
ability to add randomised errors to a single or multiple qubits in a
state vector of any size in order for the fault tolerance of each system
to be analysed. Such a subroutine was only in its early stages in the
program as it had not yet advanced to the stage of implementation of
the error correction scheme necessary for the subroutine to be mean-
ingful, but a clear plan had been drawn up as to how errors would
be implemented numerically into the system. Ideally error would be

4.6 error 46

induced between the CZ and measurement operations, as this would
be consistent with the state vector that is resilient to errors in the error
correction scheme, but error could be easily added to the state vector
of the system at any time.

4.6.1 Flip error

Flip errors are reasonably easy to simulate in the state vector in any
size as they can be effectively expressed as the application of a Pauli
X operation to a qubit. In order to operate on a single qubit, or mul-
tiple, the Kronecker product subroutine would be employed to form
operator matrices of appropriate size in a similar fashion to the way
operators would be used to initialise the system with the error correc-
tion scheme. For example the operator operation applied to flip qubit
i in a state vector of N qubits would be:

11 ⊗ 12 ⊗ · · · σX · · · ⊗ 1N (80)

It is therefore clear that such an operator could easily be produced
with nested loops of the Kronecker product subroutine, what remains
unclear however is as which qubits the flips would be applied and at
what rate.

The simple way to decide which qubits to flip would be to have a
universal error rate for bit flips and then include either Pauli opera-
tors or identity operators depending on whether a random number
meets the threshold of the error rate. This would have the bonus ef-
fect of saving memory and calculation time compared to performing
each flip individually as well as simplifying the programming of any
subroutine handling errors.

The alternative to this would be to have separate error rates for
each number of errors so that the number of errors are calculated and
then assigned to random qubits in the following step. This would be
particularly useful when testing whether the error correction scheme
protects against particular numbers of phase flips, though would ob-
viously cause a slight interest in computational requirements.

One advantage to only modelling phase flips however is that any
operator matrix can be stored in integer form and only converted to
double precision when multiplying out with the state vector. This
would save large amounts of memory compared to a phase error
matrix which would require double precision storage and thus have
memory requirements equal to the square of the memory require-
ments of the state vector.

4.7 data analysis 47

4.6.2 Phase error

Similarly to the flip error, phase errors can be simulated through the
inclusion of a phase operation on a qubit in the state vector. However,
the phase of the error present provides another variable for the model
as phase errors are obviously continuous variables rather than the
discrete flip errors. Hence not only would a random number of qubits
need to be exposed to the error, the exact value of the error would also
need to be determined. While this could be done with a fixed error,
something like a Gaussian distribution would work reasonably well
for modelling. Indeed, if a a Gaussian distribution with a particularly
high standard deviation were used, Phase errors could be applied
to every qubit, reducing the number of steps in calculation of the
operator.

4.7 data analysis

Another key component for the program is the ability to analyse cohe-
sive and accurate output data. This puts requirements on the format
of output data as well as the method of storage. For the program in
its current form, data is output formally from the fidelity function,
the value of the state vectors is printed directly to standard output,
which was typically piped into a separate file.

4.7.1 Fidelity

In order to determine if the output state and expected output state
correspond to one another, a fidelity subroutine was also included
in the program. Like the Kronecker product subroutine, this subrou-
tine was adapted from earlier work and simply performed the basic
calculation:

Fidelity = | 〈Expected State|Final State〉 |2 (81)

Like the other subroutines in the program, this calculation could
be performed with or without the BLAS library’s complex double
precision dot product routine (ZDOTU) and as such has potential for
scalability into parallel processing.

4.7.2 Bulk data

The ideal end result for a complete program would involve a large
data set of fidelity data from multiple runs of the program. As a
result some changes would have to be made so that fidelity data was
instead appended to the file. Once this had been done, a scatter plot

4.8 error correction scheme 48

between the number of gates performed on the data and the fidelity
of the result would be plotted for each size of logical qubit.

This data would then be fitted to a curve using whatever method
best worked for the output in order to establish the correlation be-
tween the two axes depending on the fixed error rate from the pro-
gram. This would hopefully lead to a better understanding of the way
in which fault tolerance was affected by the size of logical qubits for
this measurement scheme.

4.8 error correction scheme

The final part of the program is the incorporation of the error cor-
rection scheme. This involves two main subroutines, the encoding
subroutine and the detection/correction subroutine.

4.8.1 Encoding

The encoding subroutines main function would be reflective rota-
tional operation combined with the method for forming logical CZ
operators described in section 3.3. This would be challenging to per-
form and would require a great deal of coding in order for the oper-
ations to be scalable to any size logical qubit.

4.8.2 Correction

Correction, in comparison, would be a little easier to implement as
the measurement routine currently in use for the program could be
recycled for the bulk of the functionality. The main challenge would
then be the conditional statements to implement the scheme and ap-
ply the appropriate logical operations depending upon the measure-
ment outcomes. There would also need to be a small decoding step
also, but this could be adapted from the encoding step which would
need to be implemented first for correction to be possible in the first
place.

4.9 other structures

In addition to testing the error correction scheme on single qubit
gates, there are some other gates and set-ups that would be both
interesting and useful to simulate with the program. These structures
are of interest in particular as they represent the key building blocks
of common quantum algorithms.

4.9 other structures 49

Figure 5: Controlled phase gate structure and functionality [1]

4.9.1 Controlled not gate

The first interesting structure that would make a good extension to
the program would be a controlled not gate, though implementation
would require the problems with the feed forward subroutine being
unable to deal with multiple qubit state vectors to be rectified.

Obviously one of the advantages of demonstrating that this struc-
ture can be fault tolerant is that, when combined with the single qubit
gates, forms a universal set of quantum gates. This means that such a
demonstration would be necessary to prove the validity of the error
correction scheme as universal.

Unlike the single qubit gates, it would not be possible to perform
this operation repetitively without the introduction of new control
qubits. While this is not too difficult a problem to overcome, it would
make comparison of final results with expected outcomes more chal-
lenging as the expected outcomes would require far more calculation
than repetitive use of a π/2 gate, for example.

4.9.2 Controlled phase gate

A very interesting structure for simulation by the program, would be
a controlled phase gate. This structure is interesting both because not
only can it be represented without the decompositions into CNOTs
and rotations required for the circuit model, but it is also a crucial
building block for the Quantum Fourier transform algorithm [1].

This structure, show in figure 5, consists of 8 qubits in a spiral pat-
tern with measurements performed on the central square, far simpler
than the chain of gates required in the circuit model. However, like
the CNOT gate, implementation of a measurement feed forward sub-
routine that could handle multiple outputs would be required. Imple-
mentation of this structure into the model with the error correction
code would be also quite interesting given the entanglement of four
qubits simultaneously, which would present an interesting program-
ming challenge.

4.9 other structures 50

Figure 6: Quantum Fourier transform schema [1]

4.9.3 Quantum Fourier transform

If the program can simulate controlled phase gate, the Fourier trans-
form is also possible with sufficient computational resources. As shown
in ’Measurement-based quantum computation on cluster states’, this
structure can be constructed from six controlled phase gates and three
Hadamard gates [1]. This particular structure is of great interest as
it forms a crucial part of Shor’s algorithm, making implementation
highly desirable. However, memory usage of implementation for this
structure in conjunction with an error correction scheme would be
problematic given its high requirements on the number of qubits that
are simultaneously active. It is possible that the components of the
structure could be broken down in order to minimise the required
computational resources through the inclusion of unitary gates be-
tween controlled phase gates and the simulation of each phase gate
individually, but as yet this seems difficult to envision.

5
C O N C L U S I O N S

Due to the very unfinished nature of the program, few conclusions
can be drawn about the fault tolerance of the error correction scheme,
however things can be learned from the challenges encountered while
programming so that such problems can be averted in later versions
of the program as well as in other programming based projects.

5.1 choice of resources

It was found that Fortran is very much an appropriate language of
choice for this kind of program given its access to a wide range of lin-
ear algebra libraries and the ease of constructing modular programs.
If the program were to be adapted for parallel processing, this lan-
guage would continue to work well give its access to these libraries,
likely in conjunction with openMPI. Otherwise, it might be better if it
were converted to python due to python’s better handling of complex
numbers and the removal of the need to compile the program, some-
thing which would be of benefit while many values in the program
are still hard coded.

5.2 matrix decomposition

As a way of recovering the individual state vectors of particular qubits
from the larger state of the system, matrix decomposition is incredi-
bly unreliable. While this can be mitigated to a certain extent by in-
telligent use of algorithms that form canonical decompositions such
as the single value decomposition or eigen-decomposition, there are
likely to always be problems with certain values as the complexity
of superposition for the state vector increases. Fortunately this is not
too large a problem for they systems in this project as they would
rarely exceed six qubits or so, but it seems like a big issue for larger
systems.

It seems possible that rather than just being a mathematical chal-
lenge, the difficulty in decomposing a matrix to accurately represent
individual state vectors is more of problem resulting from the foun-
dations of quantum mechanics. The difficulty in taking apart a state
vector for mixed states is a mathematical reflection of the tricky na-
ture of superposition and is unlikely to ever be resolved easily.

51

5.3 further work 52

5.3 further work

While this work is unfinished, it also has a lot of potential for exten-
sion, this includes both the planned features that were not included
to the program and the inclusion of the more complex structures that
have interesting implications. As a result the work for this project
will be continued independently of the end of the course in order to
resolve the outstanding questions.

If the program can be rebuilt into a more concise package with bet-
ter modules, it may even serve as a useful tool for students interested
in one way quantum computation as it provides a clear outline of the
process in several easy to understand modules.

6
A D D I T I O N A L W O R K

With the failure of the program to simulate any measurement other
than Pauli X basis measurements, further work was required in order
to properly develop the program into a fully functional simulation of
one way quantum computation before moving onto simulation of er-
ror correction schemes. he primary criteria was therefore to develop
a simulation of the four single qubit gates required for universal com-
putation. This was attempted through debugging of the program as
well as numerous improvements to its functionality, which are de-
scribed in the following sections.

6.1 errata

A number of mistakes were made in the earlier body of work, this
section describes the corrections made to the simulation to rectify
those problems.

6.1.1 Basis measurement

One major issue for the program was that the value for the Z Pauli
eigen-basis measurement vector was incorrectly entered as to be iden-
tical to that of the X Pauli eigen-basis measurement in the Pauli ba-
sis measurement subroutine. This was a minor issue as the Z basis
measurement functionality was unused as only single qubit gate op-
erations were ever being simulated simultaneously so that the Z mea-
surement was not required in order for qubits to be removed from
the cluster. Despite this, because of the nature of the Z basis mea-
surement as a disentangling operation, in order for it to be used in
the simulations modifications to the feed forward operations would
need to be implemented to accommodate the effect of Z measure-
ments on the output states in the program. These operations would
be required when simulating multi qubit gates if the system was initi-
ated as a 2D lattice instead of directly as the cluster state for the gate.
This would be necessary for further iterations of the program. One
way to deal with this however would be simply to assume that all Z
measurement outcomes are mi ∈ { 0 } just as in "Measurement-based
quantum computation on cluster states" [1]. Doing this would negate the
need for Z operations to be fed forward as they would not effect the
output state of the simulation if this condition was met.

53

6.1 errata 54

6.1.2 Normalisation

One issue that was presenting itself for longer chains of qubits was
the lack of normalisation after measurement. This meant that the out-
put information states were acquiring a factor of 1/

√
2 after each

measurement due to the factors introduced by the CZ operation not
being completely removed. In earlier versions this was not apparent
due to other errors in the measurement simulation algorithm that
counterbalanced the effect, giving Pauli X basis measurements that
seemed correct despite being a factor of

√
2 too large.

The effect of this was missed during the theoretical work for equa-
tions 78 and 79, where a factor of 1/

√
2 mysteriously disappears be-

tween the left and right side of the equation. Once other errors in the
algorithm were corrected, upon multiple iterations of the program
the magnitude of the vectors was being increasingly small, which
was concerning until this flaw was identified through debugging.

〈+| 1√
2
(|+0〉+ |−1〉) = |0〉 = H |+〉 (78)

〈−| 1√
2
(|+0〉+ |−1〉) = |1〉 = XH |+〉 (79)

By normalising after the steps from these two equations, this factor
is negated and this was done by including this normalisation into the
algorithm used for measurement as described in subsection 6.1.2.

6.1.3 Feed forward operators

In the subroutine dealing that handled output of the correct output
states from the simulation, the operators were applied in the incor-
rect order as they were mistakenly chosen to be the operators that
are applied to the information state as a result of measurement from
equation 32, the complete opposite of the intended effect.

|outmi〉2 = e
−iψ

2 Xmi HRz(−φ)(a |0〉2 + b |1〉2) (32)

However the operators were being applied such that:

|ψ〉 = e
−iψ

2 Xmi HRz(−φ) |outmi〉2 (82)

The inverses of these operators should have been applied to recover
the output of computation such that:

6.1 errata 55

|ψ〉 = (e
−iψ

2 Xmi HRz(−φ))−1 |outmi〉2
= e

−iψ
2 R−1

z (−ψ)HXmi |outmi〉2
(83)

This explains part of the reason as to why the X basis measurement
was working while Y basis and arbitrary measurements on the X-Y
plane were not as the inverse of this group of operators is equal to
itself when φ = 0 and the measurement outcome is 0, as can be
the case when Pauli X basis measurements are applied. This is not
the case for non zero values of φ so these values were displaying
errors. In newer versions of the simulation, the inverse of the rotation
operator is now correctly utilised while the Pauli-X and Hadamard
operators remain the same as they are their own inverses.

To accompany this change, the order in which the operators were
applied was also changed through modifications to the data formats
handled by file I/O detailed in subsection 6.2.4. This was needed be-
cause the operators had to be implied in the inverse order of those in
the original program. Additionally, to simplify the program the exter-
nal phase factor was included in the inverse z-axis rotation operator
matrix such that:

e
iθ
2 R−1

z (−θ) =

(
e
−iθ

2 0

0 e
iθ
2

)
=

(
1 0

0 eiθ

)
(84)

Which is also the single qubit phase gate operator Pθ . This means
that the feed forward operators applied for n measurements became:

|ψ〉n+1 =
n

∏
i=1

(Pθ(φi)HXmi) |out〉n+1 (85)

This would also satisfy the condition for by-product operators spec-
ified in "Measurement-based quantum computation on cluster states" [1],
which states that by-product operators are composed of Pauli vectors
as Pθ becomes σz when θ = π.

6.1.4 Measurement subroutine

One very significant change is the way in which measurement of sin-
gle qubits are handled by the measurement subroutines. It was deter-
mined that one of the central issues of the program arose due to the
insufficiency of the algorithm in the handling correct super-positions
correctly. This was due to an arbitrary addition of the rows of the U

6.1 errata 56

matrix of the single value decomposition to form a vector for com-
putation of inner products as well as an arbitrary addition of the
columns of the V matrix as shown in (86).

|ψ〉 = |m〉 〈
n

∑
j=1

Uj|
n

∑
i=1

SiVi (86)

While this appeared to provide the correct output state for some
measurements, Y basis measurements would be widely inaccurate
as the complex component would be multiplied by zero, rendering
the measurement ineffective and completely non-physical. This older
version of the algorithm is shown in listing 3.

Listing 3: Old Measurement Algorithm

!Gets the state vector of the target qubit and outputs it to

work vector

call get_vector_complex(state_in, work_vector, state_out, n,

trgt)

!Calculates inner product between measurement result and

target qubit

!Uses either BLAS ZDOTC or intrinsic function depending on

preprocessor

#ifdef lblas

m_value = ZDOTC(2**n, m_vector, 1, work_vector, 1)

#else

m_value = DOT_PRODUCT(m_vector, work_vector)

#endif

!Multiplies result of dot product with rest of state vector

state_out = m_value * state_out

To solve this problem, a modification to the algorithm was devised
in order to preserve as much of the structure of the program as possi-
ble. The get_vector_complex() subroutine was changed to also pass the
values of the output of the single value decomposition to the mea-
surement subroutine so that they could be used directly on a higher
level or layer of the program. This limited the functionality of the
get_vector_complex() subroutine to effectively nil however as it was
now only able to pass variables from either the first or the last qubit
in the chain.

Next, the output state was changed to be represented by the sum of
the inner products between the vector of measurement and each col-
umn of of the U matrix from the single value decomposition, which

6.1 errata 57

was then multiplied by the single values and the rows of the transpose
matrix VT. This new approach is shown in listing 4. The normalisa-
tion after measurement described in section 6.1.2 can be also seen in
listing 4 as the factor of

√
2 multiplying the output state.

Listing 4: New Measurement Algorithm

!Gets the state vector of the target qubit and outputs it to

work vector

call get_vector_complex(state_in, work_vector, state_out, n,

trgt, U, S, VT)

state_out(:) = 0.0_dp

do i = 1, 2**n

state_out = state_out + (SQRT(2.0_dp) * ZDOTC(2, m_vector,

1, U(:, i), 1) * S(i) * VT(i, :))

end do

This new approach prevented the obvious errors with arbitrary
measurements from being produced by the simulation, particularly
ones that would become larger in magnitude than 1, values which
were invalid for quantum information states.

6.1.5 Numerical Value Precision

A minor issue in the program was the fixed parameter for π was be-
ing incorrectly entered into the program as single precision complex
instead of double precision complex. This had the effect of increasing
the machine error in the program by a factor of 8, which was fortu-
nately still small. However, this was becoming increasingly manifest
when larger chains of qubits were attempted. This was rectified by
specifying the number kind on the entry of the value in the header
part of the measurement module.

More generally, there are perhaps some issues with the programs
outputs for zero values in state vectors and operators output by the
program for debugging. As would be expected these values are now
equal to the machine error for the complex 16 format, but it may be
more useful to reformat them to zero either after an iteration of the
program or upon output of values. This would be risky when simu-
lated error in the physical system is added to the program however
as the processes dealing with machine error may not be able to distin-
guish between machine and simulated error. As long as the simulated
errors are larger than the machine error by several orders of magni-
tude this shouldn’t be too great a concern as subroutines could be
devised to distinguish between them based on this condition.

6.2 adjustments and improvements 58

6.2 adjustments and improvements

In addition to the correction of errors in the program, numerous im-
provements to the efficiency and functionality of the program were
also made.

6.2.1 Rearrangement of fidelity function

The first modification made to the program concerned the overall
internal logical structure of the program. In order to standardise the
arguments of subroutines within the program, the fidelity subroutine
was moved into the the measurement module and altered to become
a function. This allowed the elimination of the array size operator
as had already been performed with the linear algebra routines and
the need for an additional variable for fidelity in the main program.
While this will not have changed much for the performance of the
program due to compilation optimisation, it makes the program more
adaptable and facilitates understanding of its workings.

6.2.2 Measurement subroutine

In addition to modifications to the fidelity subroutine, much of the
measurement subroutines were overhauled. The two subroutines for
Pauli basis and general measurement were merged into one whilst
the random measurement outcomes were externalised to a separate
subroutine that also dealt with the various types of measurement. Ad-
ditionally the file output was moved to an additional external subrou-
tine to facilitate alternative methods as measurement, such as those
utilised later in section 6.4.

This reconfiguration had an added bonus of allowing use of rou-
tines externally in program, where it was necessary to call for the
types of measurement that the program was instructed to simulate.
One example of this would be in the feed forward of measurement
operators in for the multiple qubit cluster states where it became nec-
essary to call for information about the measurements in order to de-
termine the correct order to perform operations as well as acquire the
appropriate measurement vector so that it could be separated from
the larger state vector of the system.

6.2.3 Libraries

As the program became increasingly dependent upon external sub-
routines for linear algebra, some functionality previously performed
by intrinsic functions was replaced by calls to the BLAS library. Par-
ticularly in places where compiling with or without BLAS was de-
pendent on preprocessor control sequences. This meant that those

6.3 program outputs 59

preprocessor directives could simply be removed and the file names
modified to prevent automatic preprocessing by the compiler regard-
less of flags.

6.2.4 Data format

One of the issues raised by the correction to the order of application of
operators in the reversal of the by-product operators by the feed for-
ward subroutine was access to the files containing information about
the measurements performed on the system. This was because the
file containing measurements now needed to be read in reverse or-
der as the correction for the first by-product operator needed to be
applied last. Unfortunately there seemed to be no way to read a file
directly in reverse with Fortran’s intrinsic I/O, so modifications to
the data format were made to include a key for each measurement
outcome so that each measurement could be read directly. Now each
file is read in the correct order by accessing the record for the keys in
reverse order and applying the appropriate operators.

6.3 program outputs

Once again, the outcomes for the program had a host of issues de-
spite the new corrections and improvements. As before, X measure-
ment operations correctly formed a one bit teleportation which could
be repeated for any length of chain, but problems arose when other
operations were utilised.

The issue that drew most attention was realisation of the π
2 gate,

which formed a benchmark for the functionality of Y basis measure-
ments. In theory, this gate should be realised for a chain of five qubits
through four measurements in the XXYX bases. However, the output
of the program was identical to the input regardless of measurement
outcomes, presenting a huge problem for the correctness of the sim-
ulation. Upon investigation, it was discovered that the gate could be
realised correctly if the phase angle in the Pθ operator used to correct
for the by-product operators was doubled. When this modification
was made, a π

2 gate was fully realised, but only for measurement out-
comes of zero. If the outcome of the four measurements was one the
gate would be realised through an additional Z operator.

Similarly, when simulation of the Hadamard gate, through XYYY
measurements on an identical system, the final output was identical
to that of four X measurements (i.e. the input state had been tele-
ported to the fifth qubit). However, when the phase in the Pθ operator
was doubled, the output states would be superposition of the real and
complex Hadamard output. For example when |+〉 was the input, the
output was i−1

2 |0〉.

6.3 program outputs 60

Even without correction for by-product operators the output from
the simulations were incorrect, meaning that the problems with the
simulation must be in the way measurement was being performed,
though a thorough investigation into the problem yielded no results.
Additionally, when attempting to derive the by-product operators
specified in "Measurement-based quantum computation on cluster states"
[1], independently from the generalisation of the by-product opera-
tors being utilised the formulations differed leading to the view that
the simulation was also insufficient in this regard. For example, when
attempting to derive the by-product operator for the π

2 gate the oper-
ator was:

U = σm4
x Hσm3

x HRθ(−φ)σm2
x Hσm1

x H (87)

Applying the relation XH = ZH and assuming that either φ or
Rθ(−φ) is such that Rθ(−φ) = Z.

U = σm4
x σm3

z σzσm2
x σm1

z

= σm4+m2
x σm3+m1+1

z

(88)

Comparing this to the by-product operator for the π
2 described in

"Measurement-based quantum computation on cluster states" [1]:

UΣ,Uz(π/2) = σm4+m2
x σm3+m2+m1+1

z (89)

So the formulation of by-product operators in the program does
not match the by-product operators in the paper, which would ex-
plain why the output state would have been correct, for measurement
outcomes of 1, if the if an additional σz operation had been applied.
Interestingly enough, just applying a single Y operation on a chain
of 2 qubits will realise the π

2 gate for both possible measurement
outcomes. This would seem to indicate that the by-product opera-
tors are either incorrectly formulated or specific for the type of gate
being realised. Unfortunately, the by-product operators described in
the paper for the Hadamard gate cannot be used to correct for the
problems with the Hadamard gate in the same way so it is likely that
the problem with the program occurs before the feeding forward of
measurement outcomes.

As this problem concerned larger states, it was decided not to pro-
ceed onto simulation of the error correction scheme due as it was
reliant on clusters of at least four qubits being measured reliably. In-
stead focus was directed to attempting to solve the problems at hand
so that a better understanding of the simulation could be obtained as
well as find ways of performing the simulation more efficiently.

6.4 larger chain program 61

6.4 larger chain program

As the single qubit gates were not working as expected for the pro-
gram, it was suspected that this was due to the program only forming
a cluster state with the next qubit after each measurement. To resolve
this problem, the program was adjusted to create a larger cluster state
of five qubits before simulating measurement of them through the
single value decomposition. However, it was found that the method
used for decomposition would frequently produce incorrect answers,
likely due to limitations of this method for decomposing larger vec-
tors. Instead, an alternative program was devised that would measure
chains of five qubits simultaneously after having formed a single clus-
ter state of all five qubits. As such a measurement subroutine was de-
vised to use projection operators, which both consumed much greater
amounts of memory and provided a new challenge for obtaining the
final state.

6.4.1 Projection operators

The primary reason as to why projection operators were not used in
the program previously was that a decomposition would still be re-
quired to obtain the output state. It was decided that it would there-
fore be easier to perform both the decomposition and the measure-
ment projection at the same time through through the single value
decomposition which would save memory and simplify the program.
When measurement of larger systems however, it became apparent
that both these savings in performance were negligible and the single
value decomposition method could not be used for larger systems
reliably. This change in method had the added bonus of allowing for
simultaneous measurements to be simulated, which should correctly
produce certain gates.

For this approach, the outer products of measurement states were
instead formed into an operator matrix rather than having the states
perform an inner product with the superposed state of the measured
qubit. As such, matrices of the size 2n × 2n were required to store the
projection. For example, when measuring the first qubit in a chain of
two in the Pauli X eigenbasis:

ρ = |+〉1 〈+|1 ⊗ 12 (90)

Assuming two measurements were being performed:

ρ = |+〉1 〈+|1 ⊗ 12 × 11 ⊗ |+〉2 〈+|2 (91)

So for an arbitrary number of measurements, a subroutine using
projection operators would need to be able to generate a number of

6.4 larger chain program 62

outer products as well as multiply these matrices together. The next
step therefore was to build subroutines to support the generation
of these projection operators and apply them in order to correctly
simulate measurement of larger cluster states.

6.4.2 Outer product subroutine

In order to implement projection operators a new linear algebra sub-
routine was written and placed in the module containing the other
general linear algebra routines. This subroutine would take two com-
plex vector inputs of any size and perform and outer product to ob-
tain a complex output matrix. In this case, it would be been possible
to have a single input as both inputs are always identical for this sim-
ulation, but it was decided to allow for different inputs in case this
routine would be needed for a later simulation or application.

Listing 5: Outer product algorithm

do i = 1, n

do j = 1, x

!Computes outer product values and

!assigns them to matrix P

P(i, j) = A(i) * CONJG(B(j))

end do

end do

The algorithm used to perform the outer product was very simple
relying only on loops and the intrinsic complex conjugate routine in
Fortran. If parallelisation of the simulation were to be considered, it
would be advantageous to perhaps change this algorithm to some-
thing more scalable through use of libraries, but this was deemed to
be currently unnecessary. It would have also have been possible to
use fixed input matrices for the outer products of the Pauli X and Y
eigenvectors, but it was decided to use this approach for consistency
with the generation of outer products with arbitrary measurement
vectors. This had the double advantage of also allowing for random
error in the phase of a measurement vector to be added at a later
stage of the simulation should it be required.

6.4.3 New measurement subroutine

The new measurement implemented this outer product subroutine
along with the newly separate subroutines for measurement types
and outcome, along with the measurement file output subroutine
and data format described in subsections 6.2.2 and 6.2.4. This new

6.5 observations 63

subroutine was capable of multiple or single measurements, with the
number of measurements to read from file and performed on the sys-
tem depending upon the value entered into the subroutine. As such
simultaneous and sequential measurements could be easily chosen
through changes in parameters.

6.4.4 Retrieving output states

To retrieve the output states of the final qubit in the chain from the
larger state vector the rank decomposition algorithm used in the early
development of the program was adapted to perform a decomposi-
tion of the state vector with a known vector, the vector of the state pro-
jected into by the measurement. By sequentially decomposing each
known state in the chain the output vector corresponding the state of
the last qubit in the chain could be obtained. This method was a valid
approach to the problem of decomposing the states of each qubit as
measurement resulted in the state of the measured qubit being pure
and therefore easily separated from the state vector of the system.

Listing 6: Modified rank decomposition algorithm

!Find the value of D required for matrix B to be formed

!Reversing the kronecker product

do i = 1, o

do j = 1, n

if(C(j) /= 0.0_dp) then

D(i) = (1.0_dp/(C(j))) * B(j, i)

exit

else

continue

end if

end do

end do

As seen in listing 6, known qubit state vectors were removed from
the system through division of a 2 by 2n−1 dimensional matrix by the
known vector similarly to the original rank decomposition algorithm.
This would present a problem if the measured qubit state input was
mismatched particularly as it only uses the first non zero value but
this was necessary to prevent division by zero if the qubit is measured
in a pure |0〉 or |1〉 state.

6.5 observations

The result that was both most interesting and most disappointing for
the new program was that the outputs of both the SVD measurement
and projection operator measurement subroutines were identical for
every tested input. This was the case with both fixed and random

6.5 observations 64

measurement outcomes as well as with for X, Y and arbitrary angle
measurements. Even when simulating larger cluster states the out-
puts remained the same, with the XXYX phase gate working only for
measurement outcomes of 0 and being Z operation away from cor-
rectness with measurement outcomes of 1. The Hadamard operation
was similarly obtuse, once again giving the same results.

Given these consistent results it seems that the measurement sub-
routines tried are at least mathematically similar so the root cause of
problems could be in one of three places. The first possibility is that
the problem is in the rank decomposition being performed to remove
the states of measured qubits, but this seems unlikely given that two
methods so different should give such similar results. The second pos-
sibility is that there is a minor error in the measurement subroutine
that if rectified would produce the correct results, this is quite possi-
ble particularly in the way in which projection operator matrices are
generated so warrants further investigation. The final possibility is
that there is a fundamental misinterpretation of the schema for pro-
ducing one qubit gates that has caused the entire simulation to be
essentially invalid, this is unfortunately very likely given the consis-
tent nature of the mismatch between expected and actual outcomes
of the program but little can be done about this issue at this point as
it seems to be evasive of all attempted inquires into its source.

6.5.1 Subroutine improvements

In response to these continued problems, it was suspected that the
fault was still present in the way measurement was being performed
so an alternate measurement subroutine using a different form of the
projection operators was devised in order to check the veracity of the
original. The difference for this measurement subroutine was that the
projection operators were calculated in a single loop so that for two
measurements on three qubits in the X basis:

ρ = |+〉1 〈+|1 ⊗ |+〉2 〈+|2 ⊗ 1 (92)

Once again, this new subroutine returned the same results as ev-
ery other attempt at simulation. This likely means that the the earlier
versions were at least consistent if at least correct and that this al-
ternative way of generating projection operators is mathematically
identical to the original. Given the thoroughness of investigation into
why the program was unable to simulate the system as expected, it
was decided to instead look into aspects of the programs run time
and scaling with different sizes of systems so that something might
be learnt from the program and perhaps even the problem with it
identified.

6.5 observations 65

Figure 7: Graph of system CPU time against length of simulated chain for
the SVD measurement method

6.5.2 Timing and Scaling

A point of interest in the difference between the two approaches to
dealing with the spin chain problem is the relation between the num-
ber of qubits being simulated and time taken for processing. With
small modifications to both programs to input file and instead repeat
the same measurement each time it was possible to simulate chains of
arbitrary length and measure the time taken for the program to run
using the time command in Linux. The outputs of each program were
recorded with the length of the chain to get an idea of the correlation
between the two quantities. These output values were then plotted
using gnuplot to gain a visual perspective of the kind of relationship
between them. In addition to the data, a fitting curve was added to
each graph in order to approximately describe the relationship math-
ematically.

In figure 7, it can be seen that this relationship for the SVD method
that removes qubits after each measurement has a linear relationship
between time and chain length. This is as expected as the maximum
matrix size is constantly low so the memory requirements for the pro-
gram will be far lower than the projection operator method that re-
quire larger state vectors to be stored in memory. This result supports
the claim made in "Cluster-state quantum computation" [16], where it
is shown that measurements on a quantum state can be efficiently
simulated by a classical computer.

In figure 8 by contrast, it can be seen that the time scales approxi-
mately exponentially instead of the linear relationship from the pre-
vious figure. The parameters described in legend for the fitted curve

6.5 observations 66

Figure 8: Graph of system CPU time against length of simulated chain for
the projection operator measurement method

are unlikely to be correct given the direction of the inflectional of the
curve and are therefore best ignored. This implies a relationship of:

t ∝∼ 2n (93)

Which is as expected for the larger state vectors involved as the
memory usage would need to scale in a similar manner which would
explain the differences between the two simulations. This scaling is
also indicative of the power of quantum computing because a real
physical system would not have to scale in the same way allowing
for efficient solutions to problems. When trying to simulate chains
of larger than fourteen qubits in this manner the program seemed to
time out before calculation, it is likely that this is because the program
exceeded the memory limits of the machine so either more memory
would be required to simulate larger systems or parts of the state
vectors or operators would need to be stored on the hard disk, which
would significantly bottleneck performance of the program.

The implications of this longer time extend onto future simulation
of the error correction scheme which would require the same scal-
ing factor when considering performance. Particularly as the simplest
simulations of the error correction scheme would require at least six
qubits to be simultaneously stored in memory along with their op-
erators. However, as ten qubits can be fully simulated during the
creation of cluster states and measurement in less than a second, sim-
ulations of the five qubit version of the error correction code would
likely be able to be simulated easily for systems of two logical qubit.
Unfortunately longer chains and multiple qubit gate operators would
present a problem due to their significantly higher memory require-
ments given that they would likely require at least twenty five qubits

6.6 conclusions 67

which exceeds the current memory capacities of the machines used
for simulation. In this case it would be necessary to use parallel pro-
cessing to efficiently perform the simulation.

6.6 conclusions

While some progress was made in correcting problems with the pro-
gram with measurements aside from the Pauli X measurement the
goal of simulating the error correction scheme is still a long way from
being achieved. The problem still seems to be present in the measure-
ment itself given the in-correctness of the simulated Hadamard gate
operation for all attempted methods of measurement simulation. It
is therefore quite likely that there has been a fundamental misunder-
standing of the theory behind the ’gate’ operation itself which would
need to be rectified for further progress to be made. Additionally
there are clearly problems with the way by-product operators are cal-
culated due to the mismatch between expected by-product and those
used in the simulation and this will also have to be overcome or the
operations required entered manually.

The investigations into the performance of the program did allow
better insight into the kind of computational resources that would
be required for simulation of the error correction scheme at least. It
certainly seems that single logical qubit operations can be simulated
with the same kind of hardware as used in this report while larger
systems will require some orders of magnitude more. Hopefully this
issue can be resolved for future versions of the program.

A
A P P E N D I X A : C O D E

a.1 single chain program

Listing 7: Single qubit gate program

!***
!Program for simulation of measurements on a chain of

!cluster states

!

!Relies on several external modules and BLAS and LAPACK to

function

!

!

!***
program single_chain

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

!Uses the module for the generation of control z operators

!Necessary for creation of cluster states

use cz_op_module

!Use the measurement module, containing subroutines

handling

!The measurement of single qubits in state vectors

use measurement_module

implicit none

!!

!!!!!!!!!!! FUNCTIONALITY VARIABLES !!!!!!!!!!!!!!

!!

!Variables required for program functionality

!Precision of numerical values

!integer, parameter :: dp=selected_real_kind(15,

300) !IEEE 754 Double Precision

68

A.1 single chain program 69

!Loop integers

integer :: i

!measurement time string

character(len=1) :: m_type

!variables for file i/o

real(kind=dp) :: fid_out

real(kind=dp) :: measurement_phase

!input and output state vectors

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!!

!!!!!!!!!!!!!! INPUT VARIABLES !!!!!!!!!!!!!!!!!!

!!

!Fixed variables governing program behaviour

integer :: chain_length = 2

complex(kind=dp), dimension(:), Allocatable :: init_state

complex(kind=dp), dimension(:), Allocatable :: plus_state

!Must be allocated so it can be used with kronecker

product subroutine

Allocate(plus_state(2), init_state(2))

!init_state = (/ 1.0_dp, 0.0_dp/)

init_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

plus_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

!!

!!!!!!!!!!!!!!!!!!! I/O SETUP !!!!!!!!!!!!!!!!!!!!

!!

!Open the measurements output file so that it can be reset

!’replace’ status removes file

open(100, file= ’measurements . dat ’, status= ’ replace ’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

!Close the file again as it is not needed until

!the measurement subroutine is called

close(100)

!Opens a file of measurement instructions to be read from

!contains measurement type and phase information

open(200, file= ’m_instructions . dat ’, iostat=ierr)

A.1 single chain program 70

if (ierr/=0) stop ’Error in opening f i l e m_instructions .
dat ’

!!

!!!!!!!!!!!!!!!!! PROGRAM SETUP !!!!!!!!!!!!!!!!!!

!!

!Initialised the seed for the fortran intrinsic random

number

!generator, currently unused

!call init_random_seed

!Allocate the initial state vector to the size of a single

qubit

Allocate(state_in(2))

!Initialises the first state as input initial state

state_in = init_state

!!

!!!!!!!!!!!!!!!! MAIN SIMULATION !!!!!!!!!!!!!!!!!

!!

!Repeats the process depending on the length of qubits

do i = 1, chain_length - 1

!Allocates memory for next state, will always be four in

this case

Allocate(state_out(4))

!Calls the subroutine to perform a kronecker product

between the input state

!and a plus state qubit, forming a cluster state

call kronecker_product_complex_vector(state_in,

plus_state, state_out)

!Deallocates and resizes the input state for shifting of

variables

Deallocate(state_in)

Allocate(state_in(4))

!reassign input state to value of output state

state_in = state_out

!forms a cz operator of size 4x4 and applies it to input

state

call cz_operation(state_in, 2, 1, 2)

!Adds error to input state

!call add_error()

A.1 single chain program 71

print *, state_in

!Deallocates and resizes output state for shifting of

variables

Deallocate(state_out)

Allocate(state_out(2))

!Reads measurement instructions from file

READ(200, *) m_type!, measurement_phase

!Calls the appropriate measurement subroutine dependant

on

!the instructions read from the file

if(m_type == ’R’) then

call phi_measurement(state_out, state_in, 2,

measurement_phase, 1)

else

call pauli_measurement(state_out, state_in, 2, m_type,

1)

end if

!Resizes state input to fit new size of output state

Deallocate(state_in)

Allocate(state_in(2))

state_in = state_out

Deallocate(state_out)

end do

close(200)

!!

!!!!!!!!!!!!!!!!! FEED FORWARD !!!!!!!!!!!!!!!!!!!

!!

!Calls the feed forward subroutine that determines the

desired

!information state.

call feed_forward(state_in, 1, i-1, 1)

!!

!!!!!!!!!!!!!!!!!! DATA OUTPUT !!!!!!!!!!!!!!!!!!!

!!

!Prints the input state to standard output

print *, state_in

!Opens the output fidelity file, reports error and aborts

program on failure

A.2 cz operation module 72

open(100, file=" fideity . dat",iostat=ierr)
if (ierr/=0) stop ’Error in opening f i l e f ideli ty . dat ’

fid_out = fidelity(state_in, init_state)

!Writes output of fidelity function to file

write(100, *) i, fid_out

close(100)

Deallocate(state_in, init_state, plus_state)

end program single_chain

a.2 cz operation module

Listing 8: CZ Operation Module

!***
!

!Module containing the variable cz_operation

!creation and application subroutine

!

!In modular form to make use of multi-level allocatable

arrays

!that are standard in Fortran 95

!

!***

module cz_op_module

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

!!

!!!!!!!!!!!!!!! GLOBAL VARIABLES !!!!!!!!!!!!!!!!!

!!

!Precision of numerical values

!integer, parameter :: dp=selected_real_kind(15,

300) !IEEE 754 Double Precision

contains

A.2 cz operation module 73

!***
!

!Forms the cz_operator between control and target qubits

!in state vector of n qubits

!

!Applies cz_operation to state vector and returns output

!

!***

subroutine cz_operation(state_vector, n, ctrl, trgt)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!Loop integers

integer :: i, j

!Qubit number, input from function

integer :: n

!Control and target qubit integers, input from function

!Determines matrix multiplication proceedure for final

cz_matrix

integer :: ctrl, trgt

!Constant size matrices

complex(kind=dp), dimension(:, :), Allocatable ::

identity

!2x2 identity matrix

complex(kind=dp), dimension(:, :), Allocatable ::

z_matrix

!2x2 z pauli matrix

!Matrices dependant upon integer n for sizing

!Two dimensional array of size 2**n by 2**n

complex(kind=dp), dimension(2**n, 2**n) :: cz_matrix

!Final cz_matrix

!State vector array for which size is dependant upon the

array input in function

complex(kind=dp), dimension(:), Allocatable ::

state_vector !wavefunction arrays

!Work matrices used in calculation of cz_matrix

!Allocatable as constantly resized in loops for

kronecker products

complex(kind=dp), dimension(:, :), Allocatable ::

work_matrix !Primary variable work matrix

A.2 cz operation module 74

complex(kind=dp), dimension(:, :), Allocatable ::

out_matrix !Loop output variable work

matrix

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

Allocate(identity(2, 2), z_matrix(2,2))

!Typical 2x2 matrix initialisation

identity(:,:) = 0.0_dp !Identity matrix

values

identity(1, 1) = 1.0_dp !Identity matrix

values

identity(2, 2) = 1.0_dp !Identity matrix

values

z_matrix(:,:) = 0.0_dp !z matrix values

z_matrix(1, 1) = 1.0_dp !z matrix values

z_matrix(2, 2) = -1.0_dp !z matrix values

!Initialises all values of CZ matrix to double precision

zero

!As this matrix is made of several additions this step

is

!necessary to minmise error in calculation

cz_matrix(:,:) = 0.0_dp

!!

!!!!!!!!!!!!!!! MATRIX GENERATION !!!!!!!!!!!!!!!!

!!

!Loops over values 1 to 4 with J

!Reflective of the unitary operator which has 4 terms

do j = 1, 4

!Allocates the secondary work matrix into the initial

size

!for Kronecker product multiplication

Allocate(out_matrix(2, 2))

!Performs a check to see if the first matrix in the

order of

!multiplication corresponds to a control or target

!if they do, assigns the appropriate matrix dependant

!upon the value of j.

!Otherwise assigns the identity matrix

if((trgt.eq.1).and.((j.eq.2).or.(j.eq.4))) then

A.2 cz operation module 75

out_matrix = z_matrix

elseif((ctrl.eq.1).and.((j.eq.3).or.(j.eq.4))) then

out_matrix = z_matrix

else

out_matrix = identity

end if

!Loops over each individual qubit

!This will produce a matrix of appropriate size for

each

!term of the unitary operator

do i = 2, n

!Assigns a size value to the work matrix dependent

!on the step in the loop, thus allowing it

!to contain the appropriate size of matrix at this

step

Allocate(work_matrix(2**(i-1), 2**(i-1)))

!Assigns the work matrix the value of the output

matrix

!Takes the value from the output of last step

!Allowing output matrix to be deallocated

work_matrix = out_matrix

!Deallocate output matrix

Deallocate(out_matrix)

!Allocates new size to the output matrix

!New size is appropriate for storage of

!Kronecker product between work matrix and a 2x2

matrix

Allocate(out_matrix(2**i, 2**i))

!Determines whether the next operator of the

multiplication

!Will be a control or target qubit, depending on the

term of U

!Assigns the appropriate value if so for kronecker

products

!Otherwise uses the identity matrix for the

kronecker product

if((ctrl.eq.i).and.((j.eq.3).or.(j.eq.4))) then

call kronecker_product_complex(work_matrix,

z_matrix, out_matrix)

elseif((trgt.eq.i).and.((j.eq.2).or.(j.eq.4))) then

call kronecker_product_complex(work_matrix,

z_matrix, out_matrix)

else

call kronecker_product_complex(work_matrix,

identity, out_matrix)

end if

A.2 cz operation module 76

!Deallocates the work matrix ready

!For allocation in next loop

Deallocate(work_matrix)

!Ends do loop for the jth term of the Operator

end do

!Determines which term of operator the loop is on

!If j is four, removes output from cz_matrix

!otherwise adds output to cz_matrix

!Reflective of signs of unitary operator

if(j.eq.4) then

cz_matrix = cz_matrix - out_matrix

else

cz_matrix = cz_matrix + out_matrix

end if

!Deallocates out matrix for next loop of j

Deallocate(out_matrix)

end do

!Multiplies every term of the cz_matrix by half

!This is the first constant of the operator

cz_matrix = 0.5_dp * cz_matrix

!!

!!!!!!!!!!!! OPERATOR APPLICATION !!!!!!!!!!!!!!!!

!!

!If BLAS is enabled when compiling (-lblas), this code

segment

!will be compiled into final program using BLAS functions

#ifdef lblas

!call for double precision complex matrix vector

multiply from BLAS

!Applies cz_matrix operator to state vector and outputs

it

call ZGEMV(’N’, 2**n, 2**n, 1.0_dp, cz_matrix, 2**n, &

state_vector, 1, 0.0_dp, state_vector, 1)

!If BLAS is not enabled when compiling, this section of

intrinsic functions

!will be used instead.

#else

!call for intrinsic matrix vector multiply

!Multiplies Hamiltonian matrix with basis(i) to form

vector Hi

A.3 kronecker product module 77

state_vector = MATMUL(cz_matrix, state_vector)

!ends the preprocessor if statement

#endif

!Returns calculated state vectors to main program

return

end subroutine cz_operation

end module

a.3 kronecker product module

Listing 9: Kronecker Product Module

!***
!

!Module containing routines for kronecker products

!and vector decomposition

!

!In modular form to make use of multi-level allocatable

arrays

!that are standard in Fortran 95

!

!***
module kronecker_module

implicit none

!!

!!!!!!!!!!!!!!! GLOBAL VARIABLES !!!!!!!!!!!!!!!!!

!!

!Precision of numerical values

integer, parameter :: dp=

selected_real_kind(15, 300) !IEEE 754

Double Precision

!Error reporting

integer, save :: ierr

!Error integer

contains

!***
!

!Performs Kronecker product of two matrices A and B

producing matrix P

A.3 kronecker product module 78

!n and m correspond to the dimensions of A and x and y

correspond to the dimensions of B

!dimensions of P are assumed to be n*x and m*y

!

!***

subroutine kronecker_product_complex(A, B, P)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j, k, l

!array size integers

integer :: n, m, x, y

!arrays for matrix storage

complex(kind=dp), dimension(:, :), Allocatable :: A, B,

P

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of each dimension of matrix A

!and assigns output to integer values

n = SIZE(A, 1)

m = SIZE(A, 2)

!calls the size of each dimension of matrix B

!and assigns output to integer values

x = SIZE(B, 1)

y = SIZE(B, 2)

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

!Checks to see if array sizes match for kronecker

!product, aborts program if mismatch and prints error

message

if(SIZE(P, 1).eq.(n*x)) then

continue

else if(SIZE(P, 2).eq.(m*y)) then

continue

else

stop ’Array size mismatch in kronecker product
routine ’

end if

A.3 kronecker product module 79

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

do i = 1, n

do j = 1, m

do k = 1, x

do l = 1, y

!Computes kronecker product values and

!assigns them to matrix P

P((i-1)*x + k, (j-1)*y + l) = A(i, j) * B(k,

l)

end do

end do

end do

end do

return

end subroutine kronecker_product_complex

!***
!

!Performs Kronecker product of two vectors A and B

producing vector P

!n is the array size of of A and x is the array size of B

!P is allocated a size of n*x

!

!***

subroutine kronecker_product_complex_vector(A, B, P)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j

!array size integers

integer :: n, x

!arrays for matrix storage

complex(kind=dp), dimension(:), Allocatable :: A, B, P

!!

A.3 kronecker product module 80

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value n

n = SIZE(A)

!calls the size of vector B

!and assigns output to integer value x

x = SIZE(B)

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

!Checks to see if array sizes match for kronecker

!product, aborts program if mismatch and prints error

message

if(SIZE(P, 1).eq.(n*x)) then

continue

else

stop ’Array size mismatch in kronecker product
routine ’

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

do i = 1, n

do j = 1, x

!Computes kronecker product values and

!assigns them to vector P

P((i-1)*x + j) = A(i) * B(j)

end do

end do

return

end subroutine kronecker_product_complex_vector

!***
!

!Performs decomposition of vector A by performing inverse

vectorisation

!then taking a rank 1 decomposition

!

!Outputs vectors C and D

!***

A.3 kronecker product module 81

subroutine rank_decomposition_complex(A, C, D)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j

!array size integers

integer :: m, n, o

!magnitude variable for normalisation

real(kind=dp) :: magnitude

!input and output vectors

complex(kind=dp), dimension(:), Allocatable :: A, C, D

!matrix for decomposition calculator

complex(kind=dp), dimension(:,:), Allocatable :: B

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value m

m = SIZE(A)

!calls the size of vector C

!and assigns output to integer value n

n = SIZE(C)

!calls the size of vector D

!and assigns output to integer value o

o = SIZE(D)

!Allocates B with dimensions from size of input vectors

Allocate(B(n, o))

!Perform an inverse of the vec() operator by reshaping

!vector A into a matrix of dimensions n x o

B = TRANSPOSE(RESHAPE(A, (/ o, n /)))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Finds the first non zero row from matrix B

A.3 kronecker product module 82

!and assigns it to vector C

do i = 1, o

do j = 1, n

if(B(j, i) /= 0.0_dp) then

C(j) = B(j, i)

exit

else

continue

end if

end do

end do

!Calculate vector magnitude of C

do i = 1, n

magnitude = magnitude + C(i)*C(i)

end do

magnitude = sqrt(magnitude)

!Divide components of C by magnitude to normalise

C = C / magnitude

!Find the value of D required for matrix B to be formed

!Reversing the kronecker product

do i = 1, o

do j = 1, n

if(C(j) /= 0.0_dp) then

D(i) = (1.0_dp/(C(j))) * B(j, i)

exit

else

continue

end if

end do

end do

Deallocate(B)

return

end subroutine

!***
!

!Performs decomposition of vector A by performing inverse

vectorisation

!then taking a single value decomposition and summing

values of matrices

!

!Outputs vectors C and D

A.3 kronecker product module 83

!

!***

subroutine sv_decomposition_complex(A, C, D)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop variables

integer :: i, j

!array size integers

integer :: m, n, o

!Input and output vectors

complex(kind=dp), dimension(:), Allocatable :: A, C, D

!Matrix for computation

complex(kind=dp), dimension(:,:), Allocatable :: B

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!variables required zgesvd

integer :: LWORK, LDA, LDU, LDVT

complex(kind=dp), dimension(:), Allocatable :: WORK

real(kind=dp), dimension (:), Allocatable :: RWORK

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value m

m = SIZE(A)

!calls the size of vector C

!and assigns output to integer value n

n = SIZE(C)

!calls the size of vector D

!and assigns output to integer value o

o = SIZE(D)

!Assigns values to work variables

LWORK = MAX(1, 4*(2*MIN(n, o) + MAX(n, o)))

LDA = MAX(1, n)

LDU = MAX(1, n)

A.3 kronecker product module 84

LDVT = MAX(1, o)

!Allocates matrix for decomposition size n x o

Allocate(B(n, o))

!Allocates outputs of SVD

Allocate(S(MIN(n, o)))

Allocate(U(LDU, n))

Allocate(VT(LDVT, o))

!Allocates work arrays

Allocate(WORK(MAX(1, LWORK)))

Allocate(RWORK(5*MIN(n, o)))

!Perform an inverse of the vec() operator by reshaping

!vector A into a matrix of dimensions n x o

B = TRANSPOSE(RESHAPE(A, (/ o, n /)))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Calls the zgesvd LAPACK function to find SVD

!stops program and prints error in case of failure

call zgesvd(’A’, ’A’, n, o, B, LDA, S, U, LDU, VT, LDVT,

WORK, LWORK, RWORK, ierr)

if(ierr.eq.0) then

continue

elseif(ierr.gt.0) then

stop ’ZBDSQR did not converge ’
elseif(ierr.lt.0) then

stop ’argument had an i l legal value ’
end if

!!

!!!!!!!!!!!!!!!!!!!! OUTPUT !!!!!!!!!!!!!!!!!!!!!!

!!

!Recombines values of svd to form vectors

do i = 1, n

C(i) = S(i)*SUM(U(:,i))

end do

do i = 1, o

D(i) = SUM(VT(i,:))

end do

!Deallocates values no longer needed

Deallocate(S, B, U, WORK, RWORK, VT)

return

A.3 kronecker product module 85

end subroutine

!***
!

!Finds a 2 dimensional state vector for a specific qubit

!in larger state vector

!

!Calls for decompositions to find appropriate qubit then

recombines state vector

!***

subroutine get_vector_complex(A, E, G, m, trgt)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

integer :: trgt

integer :: m, n, o, p

complex(kind=dp), dimension(:), Allocatable :: A, E, G

complex(kind=dp), dimension(:), Allocatable :: C, D, F

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!Assigns vector sizes depending on subroutine input

if(trgt.eq.1) then

n = 2

o = 2**(m - 1)

elseif(trgt.eq.m) then

o = 2

n = 2**(m - 1)

else

o = 2**(m - trgt)

n = 2**(trgt)

p = 2**(trgt-1)

end if

Allocate(D(o), C(n))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Calls for svd of vector A

call sv_decomposition_complex(A, C, D)

!Assigns values of decomposition based on target qubit

A.4 measurement module 86

!If target is not at either end of state vector,

performs

!another decomposition to find it

if(trgt.eq.1) then

E = C

G = D

elseif(trgt.eq.m) then

G = C

E = D

else

Allocate(F(p))

call sv_decomposition_complex(D, E, F)

call kronecker_product_complex_vector(C, F, G)

Deallocate(F)

end if

Deallocate(C, D)

return

end subroutine

end module

a.4 measurement module

Listing 10: Measurement Module

!***
!

!Module containing routines for simulating measurement

!proceedures. Includes general and pauli basis

!Measurements

!

!Also contains feed forward subroutine

!

!In modular form to make use of multi-level allocatable

arrays

!that are standard in Fortran 95

!

!***

module measurement_module

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

A.4 measurement module 87

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

implicit none

!!

!!!!!!!!!!!!!!! GLOBAL VARIABLES !!!!!!!!!!!!!!!!!

!!

!Precision of numerical values

!integer, parameter :: dp=selected_real_kind(15,

300) !IEEE 754 Double Precision

!Data format value

!Character, two integers then three double precision

numbers

!Spacing of 3 between entries

character(len=70), save :: data_format = ’ (A4, 2I4 , 3E25

.16E3) ’

!Value of pi to be used by program

!Used to convert phase angles

real(kind=dp), parameter :: pi =

3.1415926535897932384626433832795

contains

!***
!

!Performs generalised basis measurement on target qubit

!in state vector

!

!Measurement phase read through arguments of subroutine

!Writes measurement data to file

!***

subroutine phi_measurement(state_out, state_in, n, m_phase

, trgt)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!input arguments

integer :: trgt

!target qubit

A.4 measurement module 88

integer :: n

!number of qubits

real(kind=dp) :: m_phase

!measurement phase value

!states for calculation

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!measurement variables

integer :: m_result

!measurement outcome (0 or

1)

complex(kind=dp) :: m_value

!measurement inner product value (

braket)

complex(kind=dp), dimension(2) :: m_vector !

measurement vector

!variables for function calls

real(kind=dp) :: rand_num

!random number storage

complex(kind=dp) :: ZDOTC

!complex dot product subroutine

!work vector for subroutine calculation

complex(kind=dp), dimension(:), Allocatable ::

work_vector

!common matrices

complex(kind=dp), dimension(2, 2) :: x_matrix !

pauli x

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

x_matrix(:, :) = 0.0_dp !Pauli x

x_matrix(1, 2) = 1.0_dp !Pauli x

x_matrix(2, 1) = 1.0_dp !Pauli x

m_vector(1) = EXP(CMPLX(0.0_dp, (- m_phase) / 2.0_dp,

kind=dp))

m_vector(2) = EXP(CMPLX(0.0_dp, (m_phase) / 2.0_dp, kind

=dp))

!!

!!!!!!!!!!!!!! MEASUREMENT OUTCOME !!!!!!!!!!!!!!!

!!

!Calls for random number from intrinsic subroutine

!rounds output to nearest integer (0 or 1)

A.4 measurement module 89

call RANDOM_NUMBER(rand_num)

m_result = NINT(rand_num)

!adjusts measurement vector based on measurement

!result. multiplies by pauli x if result = 1

if(m_result.eq.0) then

continue

elseif(m_result.eq.1) then

m_vector = MATMUL(x_matrix, m_vector)

else

print *, ’Error with random measurement results ’
stop

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Gets the state vector of the target qubit and outputs

it to work vector

call get_vector_complex(state_in, work_vector, state_out

, n, trgt)

!Calculates inner product between measurement result and

target qubit

!Uses either BLAS ZDOTU or intrinsic function depending

on preprocessor

#ifdef lblas

m_value = ZDOTC(2**n, m_vector, 1, work_vector, 1)

#else

m_value = DOT_PRODUCT(m_vector, work_vector)

#endif

!Multiplies result of dot product with rest of state

vector

state_out = m_value * state_out

!!

!!!!!!!!!!!!!!!!!!! FILE I/O !!!!!!!!!!!!!!!!!!!!!

!!

!Prints data about measurements to file for use in

!feed forward subroutine later

open(100, file= ’measurements . dat ’, access= ’append’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

A.4 measurement module 90

write(100, data_format) ’R’, trgt, m_result, m_phase,

REALPART(m_value), IMAGPART(m_value)

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

return

end subroutine phi_measurement

!***
!

!Perfoms measurements on target qubits in state vector

!in the pauli basis of choice

!

!Writes measurement data to file

!***

subroutine pauli_measurement(state_out, state_in, n,

m_type, trgt)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!input arguments

integer :: trgt

!target qubit

integer :: n

!number of qubits

real(kind=dp) :: m_phase

!measurement phase value

!states for calculation

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!measurement variables

integer :: m_result

!measurement outcome (0 or

1)

complex(kind=dp) :: m_value

!measurement inner product value (

braket)

character(len=1) :: m_type

!measurement time string

complex(kind=dp), dimension(2) :: m_vector !

measurement vector

A.4 measurement module 91

!variables for function calls

real(kind=dp) :: rand_num

!random number storage

complex(kind=dp) :: ZDOTC

!complex dot product subroutine

!work vector for subroutine calculation

complex(kind=dp), dimension(:), Allocatable ::

work_vector

!common vectors

complex(kind=dp), dimension(2) :: x_evector

!x pauli eigenvector

complex(kind=dp), dimension(2) :: z_evector

!z pauli eigenvector

complex(kind=dp), dimension(2) :: y_evector

!y pauli eigenvector

!common matrices

complex(kind=dp), dimension(2, 2) :: x_matrix

complex(kind=dp), dimension(2, 2) :: z_matrix

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!Basis vectors

x_evector(1) = (1.0_dp / SQRT(2.0_dp)) * 1.0_dp

!Pauli x eigenvector

x_evector(2) = (1.0_dp / SQRT(2.0_dp)) * 1.0_dp

!Pauli x eigenvector

z_evector(1) = (1.0_dp / SQRT(2.0_dp)) * 1.0_dp

!Pauli z eigenvector

z_evector(2) = (1.0_dp / SQRT(2.0_dp)) * 0.0_dp

!Pauli z eigenvector

y_evector(1) = (1.0_dp / SQRT(2.0_dp)) * (1.0_dp, 0.0_dp

) !Pauli y eigenvector

y_evector(2) = (1.0_dp / SQRT(2.0_dp)) * (0.0_dp, 1.0_dp

) !Pauli y eigenvector

!pauli matrices

x_matrix(1, 2) = 1.0_dp !Pauli x

x_matrix(1, 1) = 0.0_dp !Pauli x

x_matrix(2, 2) = 0.0_dp !Pauli x

x_matrix(2, 1) = 1.0_dp !Pauli x

z_matrix(1, 1) = 1.0_dp !Pauli z

z_matrix(1, 2) = 0.0_dp !Pauli z

z_matrix(2, 1) = 0.0_dp !Pauli z

A.4 measurement module 92

z_matrix(2, 2) = -1.0_dp !Pauli z

!Selects appropriate measurement vector and measurement

!phase based on input arguments

if(m_type == ’X’) then

m_vector = x_evector

m_phase = 0.0_dp

elseif(m_type == ’Z’) then

m_vector = z_evector

m_phase = 0.0_dp

elseif(m_type == ’Y’) then

m_vector = y_evector

m_phase = pi / 2.0_dp

else

print *, ’Error selecting measurement matrix check
subroutine input ’

stop

end if

!!

!!!!!!!!!!!!!! MEASUREMENT OUTCOME !!!!!!!!!!!!!!!

!!

!Calls for random number from intrinsic subroutine

!rounds output to nearest integer (0 or 1)

call RANDOM_NUMBER(rand_num)

m_result = 0!NINT(rand_num)

!adjusts measurement vector based on measurement

!result. multiplies by pauli x if result = 1 for z

!multiplies by pauli z if result = 1 for x and y.

if(m_result.eq.0) then

continue

elseif((m_result.eq.1).and.(m_type.eq. ’Z’)) then

m_vector = MATMUL(x_matrix, m_vector)

elseif((m_result.eq.1).and.(m_type.eq. ’X’)) then

m_vector = MATMUL(z_matrix, m_vector)

elseif((m_result.eq.1).and.(m_type.eq. ’Y’)) then

m_vector = MATMUL(z_matrix, m_vector)

else

print *, ’Error with random measurement results ’
stop

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Gets the state vector of the target qubit and outputs

it to work vector

call get_vector_complex(state_in, work_vector, state_out

, n, trgt)

A.4 measurement module 93

!Calculates inner product between measurement result and

target qubit

!Uses either BLAS ZDOTU or intrinsic function depending

on preprocessor

#ifdef lblas

m_value = ZDOTC(2**n, m_vector, 1, work_vector, 1)

#else

m_value = DOT_PRODUCT(m_vector, work_vector)

#endif

!Multiplies result of dot product with rest of state

vector

state_out = m_value * state_out

!!

!!!!!!!!!!!!!!!!!!! FILE I/O !!!!!!!!!!!!!!!!!!!!!

!!

!Prints data about measurements to file for use in

!feed forward subroutine later

open(100, file= ’measurements . dat ’, access= ’append’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

write(100, data_format) m_type, trgt, m_result, m_phase,

REALPART(m_value), IMAGPART(m_value)

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

return

end subroutine pauli_measurement

!***
!

!Reads measurement data from file and performs

calculations

!to obtain output states for qubits

!

!

A.4 measurement module 94

!***

subroutine feed_forward(state_vector, n, m_number, trgt)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i

!input arguments

integer :: trgt, n, m_number

!measurement variables

integer :: m_target

integer :: m_result

real(kind=dp) :: m_phase, m_value_re, m_value_im

character(len=1) :: m_type

complex(kind=dp) :: m_value

!state vectors for processing

complex(kind=dp), dimension(:), Allocatable ::

state_vector

complex(kind=dp), dimension(:), Allocatable ::

trgt_vector

!common matrices

complex(kind=dp), dimension(2, 2) :: x_matrix

complex(kind=dp), dimension(2, 2) :: h_matrix

!calculated matrices

complex(kind=dp), dimension(2, 2) :: rz_matrix

complex(kind=dp), dimension(2, 2) :: h_rz_matrix

!work vectors

complex(kind=dp), dimension(:), Allocatable ::

work_vector

complex(kind=dp), dimension(:), Allocatable ::

top_vector, bot_vector

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

h_matrix(1, 1) = (1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

h_matrix(1, 2) = (1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

h_matrix(2, 1) = (1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

A.4 measurement module 95

h_matrix(2, 2) = -(1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

x_matrix(1, 2) = 1.0_dp

!Pauli x

x_matrix(1, 1) = 0.0_dp

!Pauli x

x_matrix(2, 2) = 0.0_dp

!Pauli x

x_matrix(2, 1) = 1.0_dp

!Pauli x

Allocate(trgt_vector(2))

!Open measurements file for reading by main function

open(100, file= ’measurements . dat ’, access= ’ sequential ’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

!determines number of qubits, if qubit no > 1, finds the

target qubit state vector

if(n.eq.1) then

trgt_vector = state_vector

else

Allocate(work_vector(2**(n-1)))

call get_vector_complex(state_vector, trgt_vector,

work_vector, n, trgt)

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!loops over the number of measurements performed

do i = 1, m_number

read(100, data_format) m_type, m_target, m_result,

m_phase, m_value_re, m_value_im

!forms rotation matrix from phase information

rz_matrix(:,:) = 0.0_dp

rz_matrix(1,1) = EXP(CMPLX(0.0_dp, (- m_phase) / 2.0
_dp, kind=dp))

rz_matrix(2,2) = EXP(CMPLX(0.0_dp, (m_phase) / 2.0_dp,

kind=dp))

!forms matrix that is product of rotation and hadamard

matrices

h_rz_matrix = MATMUL(h_matrix, rz_matrix)

A.4 measurement module 96

!computes output state based on measurement

information and stores in target vector

if(m_result.eq.0) then

trgt_vector = EXP(CMPLX(0.0_dp, (- m_phase) /

2.0_dp, kind=dp)) * MATMUL(h_rz_matrix,

trgt_vector)

elseif(m_result.eq.1) then

trgt_vector = EXP(CMPLX(0.0_dp, (- m_phase) /

2.0_dp, kind=dp)) * MATMUL(MATMUL(x_matrix,

h_rz_matrix), trgt_vector)

endif

end do

!close measurement information file as it is no longer

needed

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

!!

!!!!!!!!!! STATE VECTOR RECONSTRUCTION !!!!!!!!!!!

!!

!checks to see if state vector needs to be reconstructed

!(i.e. if n is not 1 then must be recombine)

if(n.eq.1) then

!if n = 1 no recombination necessary

state_vector = trgt_vector

else

!allocates work vectors based on target and number of

qubits

Allocate(top_vector(2**trgt), bot_vector(2**(n-trgt)))

!breaks state vector apart for recombination

call sv_decomposition_complex(work_vector, top_vector,

bot_vector)

!resizes work vector for next calculation

Deallocate(work_vector)

Allocate(work_vector(2**trgt))

!recombines state vectors

call kronecker_product_complex_vector(top_vector,

trgt_vector, work_vector)

call kronecker_product_complex_vector(work_vector,

bot_vector, state_vector)

Deallocate(top_vector, bot_vector, work_vector)

end if

A.4 measurement module 97

Deallocate(trgt_vector)

return

end subroutine

!***
!Finds "fidelity" of two states

!

!

!Can be compiled with or without BLAS

!

!

!***
function fidelity(state_one, state_two)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!Function variables

integer :: n

!

integer size of state vectors

real(kind=dp) :: fidelity

!

Fidelity variable for function output

complex(kind=dp) :: ZDOTC

!ZDOT variable for blas library function

!Input state vectors

complex(kind=dp), dimension(:), Allocatable :: state_one

!First input state vector

complex(kind=dp), dimension(:), Allocatable :: state_two

!Second input state vector

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

print *, SIZE(state_one), SIZE(state_two)

!Checks to see if array sizes of two state vectors match

!If they do assigns value to n for inner product

calculation

!Otherwise stops program and prints error message

if(SIZE(state_one).eq.SIZE(state_two)) then

n = SIZE(state_one)

else

stop ’Array size mismatch in fideli ty function ’

A.5 fidelity function 98

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!If BLAS is enabled when compiling (-lblas), this code

segment

!will be compiled into final program using BLAS functions

#ifdef lblas

fidelity = (abs(ZDOTC(n, state_one,1, state_two, 1)))**2

!If BLAS is not enabled when compiling, this section of

intrinsic functions

!will be used instead.

#else

fidelity = (abs(DOT_PRODUCT(state_one, state_two)))

**2

!ends the preprocessor if statement

#endif

!returns value of fidelity from subroutine to main

program

return

end function fidelity

end module measurement_module

a.5 fidelity function

Listing 11: Fidelity Function

!***
!Finds "fidelity" of two states

!

!

!Can be compiled with or without BLAS

!

!

!***
function fidelity(state_one, state_two)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

A.5 fidelity function 99

!Precision of numerical values

integer, parameter :: dp=selected_real_kind(15,

300) !IEEE 754 Double Precision

!Function variables

integer :: n

!

integer size of state vectors

real(kind=dp) :: fidelity

!

Fidelity variable for function output

complex(kind=dp) :: ZDOTC

!ZDOT

variable for blas library function

!Input state vectors

complex(kind=dp), dimension(:), Allocatable :: state_one

!First input state vector

complex(kind=dp), dimension(:), Allocatable :: state_two

!Second input state vector

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

print *, SIZE(state_one), SIZE(state_two)

!Checks to see if array sizes of two state vectors match

!If they do assigns value to n for inner product

calculation

!Otherwise stops program and prints error message

if(SIZE(state_one).eq.SIZE(state_two)) then

n = SIZE(state_one)

else

stop ’Array size mismatch in fideli ty function ’
end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!If BLAS is enabled when compiling (-lblas), this code

segment

!will be compiled into final program using BLAS functions

#ifdef lblas

fidelity = (abs(ZDOTC(n, state_one,1, state_two, 1)))**2

!If BLAS is not enabled when compiling, this section of

intrinsic functions

!will be used instead.

#else

A.5 fidelity function 100

fidelity = (abs(DOT_PRODUCT(state_one, state_two)))**2

!ends the preprocessor if statement

#endif

!returns value of fidelity from subroutine to main program

return

end function fidelity

B
A P P E N D I X B : R E S O U R C E S U S E D

The following contains details about computational resources used
for the creation and running of the program.

b.1 computer used

Processor Intel Core i7 2600K @ 3.40GHz

Memory 8.00GB Dual-Channel DDR3 @ 802MHz

Motherboard ASUSTeK Computer INC. P8P67 PRO

Disk Drive 931GB SAMSUNG HD103SJ

Host Operating System Windows 8.1 Pro 64-bit

Guest Operating System Linux Mint 13 Maya

b.2 compiler settings

The code was compiled using the gfortran compiler using flags -O3

-lblas and -llapack. -g was used for debugging. BLAS was used for
matrix vector multiplication and inner product calculation.LAPACK
was used for single value decomposition.

101

C
A P P E N D I X C : A D D I T I O N A L C O D E

c.1 single chain program

Listing 12: Single qubit gate program

!***
!Program for simulation of measurements on a chain of

!cluster states

!

!Relies on several external modules and BLAS and LAPACK to

function

!

!

!***
program single_chain

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

!Uses the module for the generation of control z operators

!Necessary for creation of cluster states

use cz_op_module

!Use the measurement module, containing subroutines

handling

!The measurement of single qubits in state vectors

use measurement_module

implicit none

!!

!!!!!!!!!!! FUNCTIONALITY VARIABLES !!!!!!!!!!!!!!

!!

!Variables required for program functionality

!Precision of numerical values

!integer, :: dp=selected_real_kind(15, 300)

!IEEE 754 Double Precision

102

C.1 single chain program 103

!Loop integers

integer :: i

!measurement time string

character(len=1) :: m_type

integer :: m_number

!variables for file i/o

real(kind=dp) :: fid_out

real(kind=dp) :: m_phase

!input and output state vectors

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!!

!!!!!!!!!!!!!! INPUT VARIABLES !!!!!!!!!!!!!!!!!!

!!

!Fixed variables governing program behaviour

integer :: chain_length = 5

complex(kind=dp), dimension(:), Allocatable :: init_state

complex(kind=dp), dimension(:), Allocatable :: plus_state

!Must be allocated so it can be used with kronecker

product subroutine

Allocate(plus_state(2), init_state(2))

!init_state = (/ (1.0_dp, 0.0_dp), (0.0_dp, 0.0_dp)/)

init_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

plus_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

!!

!!!!!!!!!!!!!!!!!!! I/O SETUP !!!!!!!!!!!!!!!!!!!!

!!

!Open the measurements output file so that it can be reset

!’replace’ status removes file

open(100, file= ’measurements . dat ’, status= ’ replace ’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

!Close the file again as it is not needed until

!the measurement subroutine is called

close(100)

!Opens a file of measurement instructions to be read from

!contains measurement type and phase information

open(200, file= ’m_instructions . dat ’, iostat=ierr)

C.1 single chain program 104

if (ierr/=0) stop ’Error in opening f i l e m_instructions .
dat ’

!!

!!!!!!!!!!!!!!!!! PROGRAM SETUP !!!!!!!!!!!!!!!!!!

!!

!Initialised the seed for the fortran intrinsic random

number

!generator, currently unused

!call init_random_seed

!Allocate the initial state vector to the size of a single

qubit

Allocate(state_in(2))

!Initialises the first state as input initial state

state_in = init_state

!!

!!!!!!!!!!!!!!!! MAIN SIMULATION !!!!!!!!!!!!!!!!!

!!

!Repeats the process depending on the length of qubits

do i = 1, (chain_length - 1)

!Allocates memory for next state, will always be four in

this case

Allocate(state_out(4))

!Calls the subroutine to perform a kronecker product

between the input state

!and a plus state qubit, forming a cluster state

call kronecker_product_complex_vector(state_in,

plus_state, state_out)

!Deallocates and resizes the input state for shifting of

variables

Deallocate(state_in)

Allocate(state_in(4))

!reassign input state to value of output state

state_in = state_out

!forms a cz operator of size 4x4 and applies it to input

state

call cz_operation(state_in, 2, 1, 2)

!Adds error to input state

!call add_error()

C.1 single chain program 105

!Deallocates and resizes output state for shifting of

variables

Deallocate(state_out)

Allocate(state_out(2))

!Reads measurement instructions from file

READ(200, *) m_number, m_type, m_phase

call general_measurement(state_out, state_in, 2, m_type,

m_phase, 1, i)

!Resizes state input to fit new size of output state

Deallocate(state_in)

Allocate(state_in(2))

state_in = state_out

Deallocate(state_out)

end do

close(200)

print *, CMPLX(state_in, kind=4)

!!

!!!!!!!!!!!!!!!!! FEED FORWARD !!!!!!!!!!!!!!!!!!!

!!

!Calls the feed forward subroutine that determines the

desired

!information state.

call feed_forward(state_in, 1, i-1, 1)

!!

!!!!!!!!!!!!!!!!!! DATA OUTPUT !!!!!!!!!!!!!!!!!!!

!!

!Prints the input state to standard output

print *, CMPLX(state_in, kind=4)

!Opens the output fidelity file, reports error and aborts

program on failure

open(100, file=" fideity . dat",iostat=ierr)
if (ierr/=0) stop ’Error in opening f i l e f ideli ty . dat ’

fid_out = fidelity(state_in, init_state)

!Writes output of fidelity function to file

write(100, *) i, fid_out

C.1 single chain program 106

close(100)

Deallocate(state_in, init_state, plus_state)

end program single_chain

C.2 projection operators program 107

c.2 projection operators program

Listing 13: Projection operators program

!***
!Program for simulation of measurements on a chain of

!cluster states

!

!Relies on several external modules and BLAS and LAPACK to

function

!

!

!***
program single_chain

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

!Uses the module for the generation of control z operators

!Necessary for creation of cluster states

use cz_op_module

!Use the measurement module, containing subroutines

handling

!The measurement of single qubits in state vectors

use measurement_module

implicit none

!!

!!!!!!!!!!! FUNCTIONALITY VARIABLES !!!!!!!!!!!!!!

!!

!Variables required for program functionality

!Precision of numerical values

!integer, :: dp=selected_real_kind(15, 300)

!IEEE 754 Double Precision

!Loop integers

integer :: i

integer :: m_number

!measurement time string

character(len=1) :: m_type

C.2 projection operators program 108

!variables for file i/o

real(kind=dp) :: fid_out

real(kind=dp) :: m_phase

!input and output state vectors

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!work vector for subroutine calculation

complex(kind=dp), dimension(:), Allocatable ::

work_vector

!variables for function calls

complex(kind=dp) :: ZDOTC

!complex dot product

subroutine

integer :: m_result, trgt

!

measurement outcome (0 or 1)

complex(kind=dp), dimension(:), Allocatable :: m_vector

!measurement

vector

!!

!!!!!!!!!!!!!! INPUT VARIABLES !!!!!!!!!!!!!!!!!!

!!

!Fixed variables governing program behaviour

integer :: chain_length = 5

complex(kind=dp), dimension(:), Allocatable :: init_state

complex(kind=dp), dimension(:), Allocatable :: plus_state

!Must be allocated so it can be used with kronecker

product subroutine

Allocate(plus_state(2), init_state(2))

!init_state = (/ (1.0_dp, 0.0_dp), (0.0_dp, 0.0_dp)/)

init_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

plus_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

!!

!!!!!!!!!!!!!!!!!!! I/O SETUP !!!!!!!!!!!!!!!!!!!!

C.2 projection operators program 109

!!

!Open the measurements output file so that it can be reset

!’replace’ status removes file

open(100, file= ’measurements . dat ’, status= ’ replace ’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

!Close the file again as it is not needed until

!the measurement subroutine is called

close(100)

!Opens a file of measurement instructions to be read from

!contains measurement type and phase information

open(200, file= ’m_instructions . dat ’, iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e m_instructions .
dat ’

!!

!!!!!!!!!!!!!!!!! PROGRAM SETUP !!!!!!!!!!!!!!!!!!

!!

!Initialised the seed for the fortran intrinsic random

number

!generator, currently unused

!call init_random_seed

!Allocate the initial state vector to the size of a single

qubit

Allocate(state_in(2))

Allocate(m_vector(2))

!Initialises the first state as input initial state

state_in = init_state

!!

!!!!!!!!!!!!!!!! MAIN SIMULATION !!!!!!!!!!!!!!!!!

!!

!Repeats the process depending on the length of qubits

do i = 1, (chain_length - 1)

!Allocates memory for next state, will always be four in

this case

Allocate(state_out(2**(i+1)))

C.2 projection operators program 110

!Calls the subroutine to perform a kronecker product

between the input state

!and a plus state qubit, forming a cluster state

call kronecker_product_complex_vector(state_in,

plus_state, state_out)

!Deallocates and resizes the input state for shifting of

variables

Deallocate(state_in)

Allocate(state_in(2**(i+1)))

state_in = state_out

Deallocate(state_out)

end do

do i=1, (chain_length - 1)

!forms a cz operator of size 4x4 and applies it to input

state

call cz_operation(state_in, chain_length, i, i+1)

end do

call multi_measurement(state_in, chain_length,

chain_length - 1)

!Prints data about measurements to file for use in

!feed forward subroutine later

open(100, file= ’measurements . dat ’, access= ’ direct ’, recl

=40, iostat=ierr, form= ’ formatted ’)
if (ierr/=0) stop ’Error in opening f i l e measurements .

dat ’

do i = 1, chain_length - 1

read(100, fmt=data_format, rec=(chain_length - i))

m_type, trgt, m_result, m_phase

call measurement_type(m_vector, m_type, m_phase,

m_result)

Allocate(state_out(2**(chain_length - i)))

call known_rank_decomposition_complex(state_in, m_vector

, state_out)

Deallocate(state_in)

C.2 projection operators program 111

if(i < (chain_length - 1)) then

Allocate(state_in(2**(chain_length - i)))

state_in = state_out

Deallocate(state_out)

end if

end do

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

close(200)

print *, CMPLX(state_out, kind=4)

!!

!!!!!!!!!!!!!!!!! FEED FORWARD !!!!!!!!!!!!!!!!!!!

!!

!Calls the feed forward subroutine that determines the

desired

!information state.

call feed_forward(state_out, 1, chain_length - 1, 1)

!!

!!!!!!!!!!!!!!!!!! DATA OUTPUT !!!!!!!!!!!!!!!!!!!

!!

!Prints the input state to standard output

print *, CMPLX(state_out, kind=4)

!Opens the output fidelity file, reports error and aborts

program on failure

open(100, file=" fideity . dat",iostat=ierr)
if (ierr/=0) stop ’Error in opening f i l e f ideli ty . dat ’

fid_out = fidelity(state_out, init_state)

!Writes output of fidelity function to file

write(100, *) i, fid_out

close(100)

Deallocate(init_state, plus_state)

end program single_chain

C.3 kronecker product module 112

c.3 kronecker product module

Listing 14: Kronecker Product Module

!***
!

!Module containing routines for kronecker products

!and vector decomposition

!

!In modular form to make use of multi-level allocatable

arrays

!that are standard in Fortran 95

!

!***
module kronecker_module

implicit none

!!

!!!!!!!!!!!!!!! GLOBAL VARIABLES !!!!!!!!!!!!!!!!!

!!

!Precision of numerical values

integer, parameter :: dp=selected_real_kind

(15, 300) !IEEE 754 Double Precision

!Error reporting

integer, save :: ierr

!Error integer

contains

!***
!

!Performs Kronecker product of two matrices A and B

producing matrix P

!n and m correspond to the dimensions of A and x and y

correspond to the dimensions of B

!dimensions of P are assumed to be n*x and m*y

!

!***

subroutine kronecker_product_complex(A, B, P)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j, k, l

C.3 kronecker product module 113

!array size integers

integer :: n, m, x, y

!arrays for matrix storage

complex(kind=dp), dimension(:, :), Allocatable :: A, B,

P

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of each dimension of matrix A

!and assigns output to integer values

n = SIZE(A, 1)

m = SIZE(A, 2)

!calls the size of each dimension of matrix B

!and assigns output to integer values

x = SIZE(B, 1)

y = SIZE(B, 2)

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

!Checks to see if array sizes match for kronecker

!product, aborts program if mismatch and prints error

message

if(SIZE(P, 1).eq.(n*x)) then

continue

else if(SIZE(P, 2).eq.(m*y)) then

continue

else

stop ’Array size mismatch in kronecker product
routine ’

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

do i = 1, n

do j = 1, m

do k = 1, x

do l = 1, y

!Computes kronecker product values and

!assigns them to matrix P

P((i-1)*x + k, (j-1)*y + l) = A(i, j) * B(k,

l)

C.3 kronecker product module 114

end do

end do

end do

end do

return

end subroutine kronecker_product_complex

!***
!

!Performs Kronecker product of two vectors A and B

producing vector P

!n is the array size of of A and x is the array size of B

!P is allocated a size of n*x

!

!***

subroutine kronecker_product_complex_vector(A, B, P)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j

!array size integers

integer :: n, x

!arrays for matrix storage

complex(kind=dp), dimension(:), Allocatable :: A, B, P

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value n

n = SIZE(A)

!calls the size of vector B

!and assigns output to integer value x

x = SIZE(B)

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

C.3 kronecker product module 115

!Checks to see if array sizes match for kronecker

!product, aborts program if mismatch and prints error

message

if(SIZE(P, 1).eq.(n*x)) then

continue

else

stop ’Array size mismatch in kronecker product
routine ’

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

do i = 1, n

do j = 1, x

!Computes kronecker product values and

!assigns them to vector P

P((i-1)*x + j) = A(i) * B(j)

end do

end do

return

end subroutine kronecker_product_complex_vector

!***
!

!Performs Kronecker product of two vectors A and B

producing vector P

!n is the array size of of A and x is the array size of B

!P is allocated a size of n*x

!

!***

subroutine outer_product_complex_vector(A, B, P)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j

!array size integers

integer :: n, x

C.3 kronecker product module 116

!arrays for matrix storage

complex(kind=dp), dimension(:), Allocatable :: A, B

complex(kind=dp), dimension(:, :), Allocatable :: P

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value n

n = SIZE(A)

!calls the size of vector B

!and assigns output to integer value x

x = SIZE(B)

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

!Checks to see if array sizes match for outer

!product, aborts program if mismatch and prints error

message

if((SIZE(P, 1).eq.(n)).and.(SIZE(P, 2).eq.(x))) then

continue

else

stop ’Array size mismatch in between vectors and
product matrix ’

end if

if(x == n) then

continue

else

stop ’Array size mismatch between vectors in outer
product routine ’

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

do i = 1, n

do j = 1, x

!Computes outer product values and

!assigns them to matrix P

P(i, j) = A(i) * CONJG(B(j))

end do

end do

C.3 kronecker product module 117

return

end subroutine outer_product_complex_vector

!***
!

!Performs decomposition of vector A by performing inverse

vectorisation

!then taking a rank 1 decomposition

!

!Outputs vectors C and D

!***

subroutine rank_decomposition_complex(A, C, D)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j

!array size integers

integer :: m, n, o

!magnitude variable for normalisation

real(kind=dp) :: magnitude

!input and output vectors

complex(kind=dp), dimension(:), Allocatable :: A, C, D

!matrix for decomposition calculator

complex(kind=dp), dimension(:,:), Allocatable :: B

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value m

m = SIZE(A)

!calls the size of vector C

!and assigns output to integer value n

n = SIZE(C)

!calls the size of vector D

!and assigns output to integer value o

o = SIZE(D)

C.3 kronecker product module 118

!Allocates B with dimensions from size of input vectors

Allocate(B(n, o))

!Perform an inverse of the vec() operator by reshaping

!vector A into a matrix of dimensions n x o

B = TRANSPOSE(RESHAPE(A, (/ o, n /)))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Finds the first non zero row from matrix B

!and assigns it to vector C

do i = 1, o

do j = 1, n

if(B(j, i) /= 0.0_dp) then

C(j) = B(j, i)

exit

else

continue

end if

end do

end do

!Calculate vector magnitude of C

do i = 1, n

magnitude = magnitude + C(i)*C(i)

end do

magnitude = sqrt(magnitude)

!Divide components of C by magnitude to normalise

C = C / magnitude

!Find the value of D required for matrix B to be formed

!Reversing the kronecker product

do i = 1, o

do j = 1, n

if(C(j) /= 0.0_dp) then

D(i) = (1.0_dp/(C(j))) * B(j, i)

exit

else

continue

end if

end do

end do

Deallocate(B)

C.3 kronecker product module 119

return

end subroutine

!***
!

!Performs decomposition of vector A by performing inverse

vectorisation

!then taking a rank 1 decomposition

!

!Outputs vectors C and D

!***

subroutine known_rank_decomposition_complex(A, C, D)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i, j

!array size integers

integer :: m, n, o

!input and output vectors

complex(kind=dp), dimension(:), Allocatable :: A, C, D

!matrix for decomposition calculator

complex(kind=dp), dimension(:,:), Allocatable :: B

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value m

m = SIZE(A)

!calls the size of vector C

!and assigns output to integer value n

n = SIZE(C)

!calls the size of vector D

!and assigns output to integer value o

o = SIZE(D)

!Allocates B with dimensions from size of input vectors

Allocate(B(n, o))

C.3 kronecker product module 120

!Perform an inverse of the vec() operator by reshaping

!vector A into a matrix of dimensions n x o

B = TRANSPOSE(RESHAPE(A, (/ o, n /)))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Find the value of D required for matrix B to be formed

!Reversing the kronecker product

do i = 1, o

do j = 1, n

if(C(j) /= 0.0_dp) then

D(i) = (1.0_dp/(C(j))) * B(j, i)

exit

else

continue

end if

end do

end do

Deallocate(B)

return

end subroutine

!***
!

!Performs decomposition of vector A by performing inverse

vectorisation

!then taking a single value decomposition and summing

values of matrices

!

!Outputs vectors C and D

!

!***

subroutine sv_decomposition_complex(A, C, D, U, S, VT)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop variables

integer :: i, j

!array size integers

C.3 kronecker product module 121

integer :: m, n, o

!Input and output vectors

complex(kind=dp), dimension(:), Allocatable :: A, C, D

!Matrix for computation

complex(kind=dp), dimension(:,:), Allocatable :: B

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!variables required zgesvd

integer :: LWORK, LDA, LDU, LDVT

complex(kind=dp), dimension(:), Allocatable :: WORK

real(kind=dp), dimension (:), Allocatable :: RWORK

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!calls the size of vector A

!and assigns output to integer value m

m = SIZE(A)

!calls the size of vector C

!and assigns output to integer value n

n = SIZE(C)

!calls the size of vector D

!and assigns output to integer value o

o = SIZE(D)

!Assigns values to work variables

LWORK = MAX(1, 4*(2*MIN(n, o) + MAX(n, o)))

LDA = MAX(1, n)

LDU = MAX(1, n)

LDVT = MAX(1, o)

!Allocates matrix for decomposition size n x o

Allocate(B(n, o))

!Allocates outputs of SVD

Allocate(S(MIN(n, o)))

Allocate(U(LDU, n))

Allocate(VT(LDVT, o))

!Allocates work arrays

Allocate(WORK(MAX(1, LWORK)))

Allocate(RWORK(5*MIN(n, o)))

C.3 kronecker product module 122

!Perform an inverse of the vec() operator by reshaping

!vector A into a matrix of dimensions n x o

B = TRANSPOSE(RESHAPE(A, (/ o, n /)))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Calls the zgesvd LAPACK function to find SVD

!stops program and prints error in case of failure

call zgesvd(’A’, ’A’, n, o, B, LDA, S, U, LDU, VT, LDVT,

WORK, LWORK, RWORK, ierr)

if(ierr.eq.0) then

continue

elseif(ierr.gt.0) then

stop ’ZBDSQR did not converge ’
elseif(ierr.lt.0) then

stop ’argument had an i l legal value ’
end if

!!

!!!!!!!!!!!!!!!!!!!! OUTPUT !!!!!!!!!!!!!!!!!!!!!!

!!

!Recombines values of svd to form vectors

do i = 1, n

C(i) = SUM(U(:,i))

end do

do i = 1, o

D(i) = S(i)*SUM(VT(i,:))

end do

!Deallocates values no longer needed

Deallocate(B, WORK, RWORK)

return

end subroutine

!***
!

!Finds a 2 dimensional state vector for a specific qubit

!in larger state vector

!

!Calls for decompositions to find appropriate qubit then

recombines state vector

!***

subroutine get_vector_complex(A, E, G, m, trgt, U, S, VT)

implicit none

C.3 kronecker product module 123

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

integer :: trgt

integer :: m, n, o, p

complex(kind=dp), dimension(:), Allocatable :: A, E, G

complex(kind=dp), dimension(:), Allocatable :: C, D, F

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!Assigns vector sizes depending on subroutine input

if(trgt.eq.1) then

n = 2

o = 2**(m - 1)

elseif(trgt.eq.m) then

o = 2

n = 2**(m - 1)

else

o = 2**(m - trgt)

n = 2**(trgt)

p = 2**(trgt-1)

end if

Allocate(D(o), C(n))

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Calls for svd of vector A

call sv_decomposition_complex(A, C, D, U, S, VT)

!Assigns values of decomposition based on target qubit

!If target is not at either end of state vector,

performs

!another decomposition to find it

if(trgt.eq.1) then

E = C

G = D

elseif(trgt.eq.m) then

G = C

E = D

else

!Allocate(F(p))

C.3 kronecker product module 124

!call sv_decomposition_complex(D, E, F, U, S, VT)

!call kronecker_product_complex_vector(C, F, G)

!Deallocate(F)

end if

Deallocate(C, D)

return

end subroutine

end module

C.4 measurement module 125

c.4 measurement module

Listing 15: Measurement Module

!***
!

!Module containing routines for simulating measurement

!proceedures. Includes general and pauli basis

!Measurements

!

!Also contains feed forward subroutine

!

!In modular form to make use of multi-level allocatable

arrays

!that are standard in Fortran 95

!

!***

module measurement_module

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

implicit none

!!

!!!!!!!!!!!!!!! GLOBAL VARIABLES !!!!!!!!!!!!!!!!!

!!

!Precision of numerical values

!integer :: dp=selected_real_kind(15, 300) !

IEEE 754 Double Precision

!Data format value

!Character, two integers then three double precision

numbers

!Spacing of 3 between entries

character(len=70), save :: data_format = ’ (A4, 2I4 , 1E25

.16E3) ’

!Value of pi to be used by program

!Used to convert phase angles

real(kind=dp), parameter :: pi =

3.1415926535897932384626433832795_dp

C.4 measurement module 126

contains

!***
!

!Perfoms measurements on target qubits in state vector

!in the pauli basis of choice

!

!Writes measurement data to file

!***

subroutine general_measurement(state_out, state_in, n,

m_type, m_phase, trgt, m_number)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

integer :: i

!input arguments

integer :: trgt

!target qubit

integer :: n

!number of qubits

integer :: m_number

real(kind=dp) :: m_phase

!measurement phase value

!states for calculation

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!measurement variables

integer :: m_result

!measurement outcome (0 or

1)

character(len=1) :: m_type

!measurement type string

complex(kind=dp), dimension(2) :: m_vector

!measurement vector

!variables for function calls

complex(kind=dp) :: ZDOTC

!complex dot product

subroutine

!work vector for subroutine calculation

C.4 measurement module 127

complex(kind=dp), dimension(:), Allocatable ::

work_vector

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!!

!!!!!!!!!!!!!! MEASUREMENT OUTCOME !!!!!!!!!!!!!!!

!!

call measurement_type(m_vector, m_type, m_phase,

m_result)

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!Gets the state vector of the target qubit and outputs

it to work vector

call get_vector_complex(state_in, work_vector, state_out

, n, trgt, U, S, VT)

state_out(:) = 0.0_dp

do i = 1, 2**n

state_out = state_out + (SQRT(2.0_dp) * ZDOTC(2,

m_vector, 1, U(:, i), 1) * S(i) * VT(i, :))

end do

!Multiplies result of dot product with rest of state

vector

!state_out = m_value * state_out

call measurement_to_file(m_number, m_type, trgt,

m_result, m_phase)

return

end subroutine general_measurement

subroutine multi_measurement(state_vector, n, total_m)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

C.4 measurement module 128

integer :: i, j

!input arguments

integer :: n

!number of qubits

integer :: m_number, total_m

real(kind=dp) :: m_phase

!measurement phase value

!states for calculation

complex(kind=dp), dimension(:), Allocatable ::

state_vector

!measurement variables

integer :: m_result

!measurement outcome (0 or

1)

character(len=1) :: m_type

!measurement type string

complex(kind=dp), dimension(:), Allocatable :: m_vector

!measurement

vector

complex(kind=dp), dimension(:, :), Allocatable ::

m_outer_product

!variables for function calls

real(kind=dp) :: rand_num

!random number storage

complex(kind=dp), Allocatable, dimension(:, :) ::

operator_in

complex(kind=dp), Allocatable, dimension(:, :) ::

operator_out

Allocate(m_vector(2), m_outer_product(2, 2))

do i = 1, n

m_number = i

m_type = ’X’
m_phase = 0.0_dp

m_outer_product(:,:) = 0.0_dp

if(total_m >= i) then

READ(200, *) m_number, m_type, m_phase

C.4 measurement module 129

call measurement_type(m_vector, m_type, m_phase,

m_result)

call measurement_to_file(m_number, m_type, i,

m_result, m_phase)

call outer_product_complex_vector(m_vector,

m_vector, m_outer_product)

else

m_outer_product(1, 1) = 1.0_dp

m_outer_product(2, 2) = 1.0_dp

end if

Allocate(operator_out(2**i, 2**i))

if(i == 1) then

operator_out = m_outer_product

else

call kronecker_product_complex(operator_in,

m_outer_product, operator_out)

Deallocate(operator_in)

end if

if(i < n) then

Allocate(operator_in(2**i, 2**i))

operator_in = operator_out

Deallocate(operator_out)

end if

end do

!call for double precision complex matrix vector

multiply from BLAS

!Applies cz_matrix operator to state vector and outputs

it

call ZGEMV(’N’, 2**n, 2**n, SQRT(2.0_dp) ** total_m,

operator_out, 2**n, &

state_vector, 1, 0.0_dp, state_vector, 1)

Deallocate(operator_out)

return

end subroutine multi_measurement

subroutine measurement_type(m_vector, m_type, m_phase,

m_result)

implicit none

!measurement variables

C.4 measurement module 130

integer :: m_result

!measurement outcome (0 or

1)

character(len=1) :: m_type

!measurement type string

complex(kind=dp), dimension(2) :: m_vector

!measurement vector

real(kind=dp) :: m_phase

!measurement phase value

real(kind=dp) :: rand_num

!random number storage

!common vectors

complex(kind=dp), dimension(2, 2) :: x_evector

!x pauli eigenvector

complex(kind=dp), dimension(2, 2) :: z_evector

!z pauli eigenvector

complex(kind=dp), dimension(2, 2) :: y_evector

!y pauli eigenvector

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

!Basis vectors

x_evector(1, 1) = (1.0_dp / SQRT(2.0_dp)) * 1.0_dp

!Pauli x eigenvector

x_evector(2, 1) = (1.0_dp / SQRT(2.0_dp)) * 1.0_dp

!Pauli x eigenvector

z_evector(1, 1) = 1.0_dp

!Pauli z eigenvector

z_evector(2, 1) = 0.0_dp

!Pauli z eigenvector

y_evector(1, 1) = (1.0_dp / SQRT(2.0_dp)) * (1.0_dp, 0.0
_dp) !Pauli y eigenvector

y_evector(2, 1) = (1.0_dp / SQRT(2.0_dp)) * (0.0_dp, 1.0
_dp) !Pauli y eigenvector

x_evector(1, 2) = (1.0_dp / SQRT(2.0_dp)) * (1.0_dp)

!Pauli x eigenvector

x_evector(2, 2) = (1.0_dp / SQRT(2.0_dp)) * (-1.0_dp)

!Pauli x eigenvector

z_evector(1, 2) = 0.0_dp

!Pauli z eigenvector

z_evector(2, 2) = 1.0_dp

!Pauli z eigenvector

C.4 measurement module 131

y_evector(1, 2) = (1.0_dp / SQRT(2.0_dp)) * (1.0_dp, 0.0
_dp) !Pauli y eigenvector

y_evector(2, 2) = (1.0_dp / SQRT(2.0_dp)) * (0.0_dp,

-1.0_dp) !Pauli y eigenvector

!Calls for random number from intrinsic subroutine

!rounds output to nearest integer (0 or 1)

call RANDOM_NUMBER(rand_num)

m_result = 0!NINT(rand_num)

if(m_result == 0) then

if(m_type == ’X’) then

m_vector = x_evector(:, 1)

m_phase = 0.0_dp

elseif(m_type == ’Z’) then

m_vector = z_evector(:, 1)

m_phase = 0.0_dp

elseif(m_type == ’Y’) then

m_vector = y_evector(:, 1)

m_phase = pi / 2.0_dp

elseif(m_type == ’R’) then

m_vector(1) = x_evector(1, 1)

m_vector(2) = EXP(CMPLX(0.0_dp, m_phase, kind=dp)) *
x_evector(2, 1)

else

print *, ’Error selecting measurement matrix check
subroutine input ’

stop

end if

elseif(m_result == 1) then

if(m_type == ’X’) then

m_vector = x_evector(:, 2)

m_phase = 0.0_dp

elseif(m_type == ’Z’) then

m_vector = z_evector(:, 2)

m_phase = 0.0_dp

elseif(m_type == ’Y’) then

m_vector = y_evector(:, 2)

m_phase = pi / 2.0_dp

elseif(m_type == ’R’) then

m_vector(1) = x_evector(1, 2)

m_vector(2) = EXP(CMPLX(0.0_dp, m_phase, kind=dp)) *
x_evector(2, 2)

else

print *, ’Error selecting measurement matrix check
subroutine input ’

stop

end if

else

print *, ’Error with random measurement results ’

C.4 measurement module 132

stop

end if

return

end subroutine measurement_type

subroutine measurement_to_file(m_number, m_type, trgt,

m_result, m_phase)

integer :: trgt

integer :: m_result

integer :: m_number

real(kind=dp) :: m_phase

!measurement phase value

character(len=1) :: m_type

!measurement type string

!!

!!!!!!!!!!!!!!!!!!! FILE I/O !!!!!!!!!!!!!!!!!!!!!

!!

!Prints data about measurements to file for use in

!feed forward subroutine later

open(100, file= ’measurements . dat ’, access= ’ direct ’, recl

=40, iostat=ierr, form= ’ formatted ’)
if (ierr/=0) stop ’Error in opening f i l e measurements .

dat ’

write(100, fmt=data_format, rec=m_number) m_type, trgt,

m_result, m_phase

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

end subroutine measurement_to_file

subroutine feed_forward(state_vector, n, m_number, trgt)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!loop integers

integer :: i

!input arguments

C.4 measurement module 133

integer :: trgt, n, m_number

!measurement variables

integer :: m_target

integer :: m_result

real(kind=dp) :: m_phase, m_value_re, m_value_im

character(len=1) :: m_type

complex(kind=dp) :: m_value

!state vectors for processing

complex(kind=dp), dimension(:), Allocatable ::

state_vector

complex(kind=dp), dimension(:), Allocatable ::

trgt_vector

!common matrices

complex(kind=dp), dimension(2, 2) :: x_matrix

complex(kind=dp), dimension(2, 2) :: h_matrix

!calculated matrices

complex(kind=dp), dimension(2, 2) :: rz_matrix

complex(kind=dp), dimension(2, 2) :: rz_h_matrix

!work vectors

complex(kind=dp), dimension(:), Allocatable ::

work_vector

complex(kind=dp), dimension(:), Allocatable ::

top_vector, bot_vector

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!!

!!!!!!!!!!!!!!!! INITIALISATION !!!!!!!!!!!!!!!!!!

!!

h_matrix(1, 1) = (1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

h_matrix(1, 2) = (1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

h_matrix(2, 1) = (1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

h_matrix(2, 2) = -(1.0_dp / SQRT(2.0_dp)) !

Hadamard matrix

x_matrix(1, 2) = 1.0_dp

!Pauli x

x_matrix(1, 1) = 0.0_dp

!Pauli x

x_matrix(2, 2) = 0.0_dp

!Pauli x

C.4 measurement module 134

x_matrix(2, 1) = 1.0_dp

!Pauli x

Allocate(trgt_vector(2))

!Open measurements file for reading by main function

open(100, file= ’measurements . dat ’, access= ’ direct ’, recl

=40, iostat=ierr, form= ’ formatted ’)
if (ierr/=0) stop ’Error in opening f i l e measurements .

dat ’

!determines number of qubits, if qubit no > 1, finds the

target qubit state vector

if(n.eq.1) then

trgt_vector = state_vector

else

Allocate(work_vector(2**(n-1)))

call get_vector_complex(state_vector, trgt_vector,

work_vector, n, trgt, U, S, VT)

end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!loops over the number of measurements performed

do i = m_number, 1, -1

read(100, fmt=data_format, rec=i) m_type, m_target,

m_result, m_phase

!print *, m_type

!forms rotation matrix from phase information

rz_matrix(:,:) = 0.0_dp

rz_matrix(1,1) = 1.0_dp !EXP(CMPLX(0.0_dp, m_phase /

2.0_dp, kind=dp))

rz_matrix(2,2) = EXP(CMPLX(0.0_dp, m_phase * 2.0_dp,

kind=dp))

!forms matrix that is product of rotation and hadamard

matrices

rz_h_matrix = MATMUL(rz_matrix, h_matrix)

!print *, m_result

!computes output state based on measurement

information and stores in target vector

if(m_result.eq.0) then

trgt_vector = MATMUL(rz_h_matrix, trgt_vector)

elseif(m_result.eq.1) then

C.4 measurement module 135

trgt_vector = MATMUL(rz_h_matrix, MATMUL(

x_matrix, trgt_vector))

endif

!print *, trgt_vector

end do

!close measurement information file as it is no longer

needed

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

!!

!!!!!!!!!! STATE VECTOR RECONSTRUCTION !!!!!!!!!!!

!!

!checks to see if state vector needs to be reconstructed

!(i.e. if n is not 1 then must be recombine)

if(n.eq.1) then

!if n = 1 no recombination necessary

state_vector = trgt_vector

else

!allocates work vectors based on target and number of

qubits

Allocate(top_vector(2**trgt), bot_vector(2**(n-trgt)))

!breaks state vector apart for recombination

call sv_decomposition_complex(work_vector, top_vector,

bot_vector, U, S, VT)

!resizes work vector for next calculation

Deallocate(work_vector)

Allocate(work_vector(2**trgt))

!recombines state vectors

call kronecker_product_complex_vector(top_vector,

trgt_vector, work_vector)

call kronecker_product_complex_vector(work_vector,

bot_vector, state_vector)

Deallocate(top_vector, bot_vector, work_vector)

end if

Deallocate(trgt_vector)

return

end subroutine

C.4 measurement module 136

!***
!Finds "fidelity" of two states

!

!

!Can be compiled with or without BLAS

!

!

!***
function fidelity(state_one, state_two)

implicit none

!!

!!!!!!!!!!!!!!!!!!! VARIABLES !!!!!!!!!!!!!!!!!!!!

!!

!Function variables

integer :: n

!

integer size of state vectors

real(kind=dp) :: fidelity

!

Fidelity variable for function output

complex(kind=dp) :: ZDOTC

!ZDOT variable for blas library function

!Input state vectors

complex(kind=dp), dimension(:), Allocatable :: state_one

!First input state vector

complex(kind=dp), dimension(:), Allocatable :: state_two

!Second input state vector

!!

!!!!!!!!!!!!!! ARRAY SIZE CHECK !!!!!!!!!!!!!!!!!!

!!

!Checks to see if array sizes of two state vectors match

!If they do assigns value to n for inner product

calculation

!Otherwise stops program and prints error message

if(SIZE(state_one).eq.SIZE(state_two)) then

n = SIZE(state_one)

else

stop ’Array size mismatch in fideli ty function ’
end if

!!

!!!!!!!!!!!!!!!!! MAIN FUNCTION !!!!!!!!!!!!!!!!!!

!!

!If BLAS is enabled when compiling (-lblas), this code

segment

C.4 measurement module 137

!will be compiled into final program using BLAS functions

#ifdef lblas

fidelity = (abs(ZDOTC(n, state_one,1, state_two, 1)))**2

!If BLAS is not enabled when compiling, this section of

intrinsic functions

!will be used instead.

#else

fidelity = (abs(DOT_PRODUCT(state_one, state_two)))

**2

!ends the preprocessor if statement

#endif

!returns value of fidelity from subroutine to main

program

return

end function fidelity

end module measurement_module

C.5 repeating single chain program 138

c.5 repeating single chain program

Listing 16: Repeating single chain program

!***
!Program for simulation of measurements on a chain of

!cluster states

!

!Relies on several external modules and BLAS and LAPACK to

function

!

!

!***
program single_chain

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

!Uses the module for the generation of control z operators

!Necessary for creation of cluster states

use cz_op_module

!Use the measurement module, containing subroutines

handling

!The measurement of single qubits in state vectors

use measurement_module

implicit none

!!

!!!!!!!!!!! FUNCTIONALITY VARIABLES !!!!!!!!!!!!!!

!!

!Variables required for program functionality

!Precision of numerical values

!integer, :: dp=selected_real_kind(15, 300)

!IEEE 754 Double Precision

!Loop integers

integer :: i

!measurement time string

character(len=1) :: m_type

integer :: m_number

C.5 repeating single chain program 139

!variables for file i/o

real(kind=dp) :: fid_out

real(kind=dp) :: m_phase

!input and output state vectors

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!!

!!!!!!!!!!!!!! INPUT VARIABLES !!!!!!!!!!!!!!!!!!

!!

!Fixed variables governing program behaviour

integer :: chain_length = 1000000

complex(kind=dp), dimension(:), Allocatable :: init_state

complex(kind=dp), dimension(:), Allocatable :: plus_state

!Must be allocated so it can be used with kronecker

product subroutine

Allocate(plus_state(2), init_state(2))

init_state = (/ (1.0_dp, 0.0_dp), (0.0_dp, 0.0_dp)/)

!init_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp

/)

plus_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

!!

!!!!!!!!!!!!!!!!!!! I/O SETUP !!!!!!!!!!!!!!!!!!!!

!!

!Open the measurements output file so that it can be reset

!’replace’ status removes file

open(100, file= ’measurements . dat ’, status= ’ replace ’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

!Close the file again as it is not needed until

!the measurement subroutine is called

close(100)

!Opens a file of measurement instructions to be read from

!contains measurement type and phase information

open(200, file= ’m_instructions . dat ’, iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e m_instructions .
dat ’

!!

!!!!!!!!!!!!!!!!! PROGRAM SETUP !!!!!!!!!!!!!!!!!!

C.5 repeating single chain program 140

!!

!Initialised the seed for the fortran intrinsic random

number

!generator, currently unused

!call init_random_seed

!Allocate the initial state vector to the size of a single

qubit

Allocate(state_in(2))

!Initialises the first state as input initial state

state_in = init_state

!!

!!!!!!!!!!!!!!!! MAIN SIMULATION !!!!!!!!!!!!!!!!!

!!

!Repeats the process depending on the length of qubits

do i = 1, (chain_length - 1)

!Allocates memory for next state, will always be four in

this case

Allocate(state_out(4))

!Calls the subroutine to perform a kronecker product

between the input state

!and a plus state qubit, forming a cluster state

call kronecker_product_complex_vector(state_in,

plus_state, state_out)

!Deallocates and resizes the input state for shifting of

variables

Deallocate(state_in)

Allocate(state_in(4))

!reassign input state to value of output state

state_in = state_out

!forms a cz operator of size 4x4 and applies it to input

state

call cz_operation(state_in, 2, 1, 2)

!Adds error to input state

!call add_error()

!Deallocates and resizes output state for shifting of

variables

Deallocate(state_out)

Allocate(state_out(2))

C.5 repeating single chain program 141

!Reads measurement instructions from file

!READ(200, *) m_number, m_type, m_phase

m_number = i

m_phase = 0.0_dp

call general_measurement(state_out, state_in, 2, ’X’,
m_phase, 1, i)

!Resizes state input to fit new size of output state

Deallocate(state_in)

Allocate(state_in(2))

state_in = state_out

Deallocate(state_out)

end do

close(200)

!print *, CMPLX(state_in, kind=4)

!!

!!!!!!!!!!!!!!!!! FEED FORWARD !!!!!!!!!!!!!!!!!!!

!!

!Calls the feed forward subroutine that determines the

desired

!information state.

call feed_forward(state_in, 1, i-1, 1)

!!

!!!!!!!!!!!!!!!!!! DATA OUTPUT !!!!!!!!!!!!!!!!!!!

!!

!Prints the input state to standard output

!print *, CMPLX(state_in, kind=4)

!Opens the output fidelity file, reports error and aborts

program on failure

open(100, file=" fideity . dat",iostat=ierr)
if (ierr/=0) stop ’Error in opening f i l e f ideli ty . dat ’

fid_out = fidelity(state_in, init_state)

!Writes output of fidelity function to file

write(100, *) i, fid_out

close(100)

Deallocate(state_in, init_state, plus_state)

C.5 repeating single chain program 142

end program single_chain

C.6 repeating projection operators program 143

c.6 repeating projection operators program

Listing 17: Repeating projection operators program

!***
!Program for simulation of measurements on a chain of

!cluster states

!

!Relies on several external modules and BLAS and LAPACK to

function

!

!

!***
program single_chain

!!

!!!!!!!!!!!!!!!! DEPENDENCIES !!!!!!!!!!!!!!!!!!!!

!!

!Use the kronecker products module that contains linear

alegbra

!routines necessary for module to function

use kronecker_module

!Uses the module for the generation of control z operators

!Necessary for creation of cluster states

use cz_op_module

!Use the measurement module, containing subroutines

handling

!The measurement of single qubits in state vectors

use measurement_module

implicit none

!!

!!!!!!!!!!! FUNCTIONALITY VARIABLES !!!!!!!!!!!!!!

!!

!Variables required for program functionality

!Precision of numerical values

!integer, :: dp=selected_real_kind(15, 300)

!IEEE 754 Double Precision

!Loop integers

integer :: i

integer :: m_number

!measurement time string

character(len=1) :: m_type

C.6 repeating projection operators program 144

!variables for file i/o

real(kind=dp) :: fid_out

real(kind=dp) :: m_phase

!input and output state vectors

complex(kind=dp), dimension(:), Allocatable :: state_in,

state_out

!Output matrices and vectors of svd

real(kind=dp), dimension(:), Allocatable :: S

complex(kind=dp), dimension(:,:), Allocatable :: U, VT

!work vector for subroutine calculation

complex(kind=dp), dimension(:), Allocatable ::

work_vector

!variables for function calls

complex(kind=dp) :: ZDOTC

!complex dot product

subroutine

integer :: m_result, trgt

!

measurement outcome (0 or 1)

complex(kind=dp), dimension(:), Allocatable :: m_vector

!measurement

vector

!!

!!!!!!!!!!!!!! INPUT VARIABLES !!!!!!!!!!!!!!!!!!

!!

!Fixed variables governing program behaviour

integer :: chain_length = 13

complex(kind=dp), dimension(:), Allocatable :: init_state

complex(kind=dp), dimension(:), Allocatable :: plus_state

!Must be allocated so it can be used with kronecker

product subroutine

Allocate(plus_state(2), init_state(2))

!init_state = (/ (1.0_dp, 0.0_dp), (0.0_dp, 0.0_dp)/)

init_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

plus_state = (1.0_dp / SQRT(2.0_dp)) * (/ 1.0_dp, 1.0_dp/)

!!

!!!!!!!!!!!!!!!!!!! I/O SETUP !!!!!!!!!!!!!!!!!!!!

C.6 repeating projection operators program 145

!!

!Open the measurements output file so that it can be reset

!’replace’ status removes file

open(100, file= ’measurements . dat ’, status= ’ replace ’,
iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e measurements .
dat ’

!Close the file again as it is not needed until

!the measurement subroutine is called

close(100)

!Opens a file of measurement instructions to be read from

!contains measurement type and phase information

open(200, file= ’m_instructions . dat ’, iostat=ierr)

if (ierr/=0) stop ’Error in opening f i l e m_instructions .
dat ’

!!

!!!!!!!!!!!!!!!!! PROGRAM SETUP !!!!!!!!!!!!!!!!!!

!!

!Initialised the seed for the fortran intrinsic random

number

!generator, currently unused

!call init_random_seed

!Allocate the initial state vector to the size of a single

qubit

Allocate(state_in(2))

Allocate(m_vector(2))

!Initialises the first state as input initial state

state_in = init_state

!!

!!!!!!!!!!!!!!!! MAIN SIMULATION !!!!!!!!!!!!!!!!!

!!

!Repeats the process depending on the length of qubits

do i = 1, (chain_length - 1)

!Allocates memory for next state, will always be four in

this case

Allocate(state_out(2**(i+1)))

C.6 repeating projection operators program 146

!Calls the subroutine to perform a kronecker product

between the input state

!and a plus state qubit, forming a cluster state

call kronecker_product_complex_vector(state_in,

plus_state, state_out)

!Deallocates and resizes the input state for shifting of

variables

Deallocate(state_in)

Allocate(state_in(2**(i+1)))

state_in = state_out

Deallocate(state_out)

end do

do i=1, (chain_length - 1)

!forms a cz operator of size 4x4 and applies it to input

state

call cz_operation(state_in, chain_length, i, i+1)

end do

call multi_measurement(state_in, chain_length,

chain_length - 1)

!Prints data about measurements to file for use in

!feed forward subroutine later

open(100, file= ’measurements . dat ’, access= ’ direct ’, recl

=40, iostat=ierr, form= ’ formatted ’)
if (ierr/=0) stop ’Error in opening f i l e measurements .

dat ’

do i = 1, chain_length - 1

read(100, fmt=data_format, rec=(chain_length-1)) m_type,

trgt, m_result, m_phase

call measurement_type(m_vector, m_type, m_phase,

m_result)

Allocate(state_out(2**(chain_length - i)))

call known_rank_decomposition_complex(state_in, m_vector

, state_out)

Deallocate(state_in)

C.6 repeating projection operators program 147

if(i < (chain_length - 1)) then

Allocate(state_in(2**(chain_length - i)))

state_in = state_out

Deallocate(state_out)

end if

end do

close(100, iostat=ierr)

if (ierr/=0) stop ’Error in closing f i l e measurements .
dat ’

close(200)

print *, CMPLX(state_out, kind=4)

!!

!!!!!!!!!!!!!!!!! FEED FORWARD !!!!!!!!!!!!!!!!!!!

!!

!Calls the feed forward subroutine that determines the

desired

!information state.

call feed_forward(state_out, 1, chain_length - 1, 1)

!!

!!!!!!!!!!!!!!!!!! DATA OUTPUT !!!!!!!!!!!!!!!!!!!

!!

!Prints the input state to standard output

print *, CMPLX(state_out, kind=4)

!Opens the output fidelity file, reports error and aborts

program on failure

open(100, file=" fideity . dat",iostat=ierr)
if (ierr/=0) stop ’Error in opening f i l e f ideli ty . dat ’

fid_out = fidelity(state_out, init_state)

!Writes output of fidelity function to file

write(100, *) i, fid_out

close(100)

Deallocate(init_state, plus_state)

end program single_chain

B I B L I O G R A P H Y

[1] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-
based quantum computation with cluster states,” arXiv e-print
quant-ph/0301052, Jan. 2003. Phys. Rev. A 68, 022312 (2003).

[2] J. Joo and D. L. Feder, “Error-correcting one-way quantum com-
putation with global entangling gates,” arXiv e-print 0908.0768,
Aug. 2009. PHYSICAL REVIEW A 80, 032312 (2009).

[3] H. J. Briegel, D. E. Browne, W. DÃŒr, R. Raussendorf, and
M. V. d. Nest, “Measurement-based quantum computation,”
arXiv e-print 0910.1116, Oct. 2009. Nature Physics 5 1, 19-26

(2009).

[4] H. J. Briegel and R. Raussendorf, “Persistent entanglement in
arrays of interacting particles,” arXiv e-print quant-ph/0004051,
Apr. 2000.

[5] J. Joo, E. Alba, J. J. GarcÃa-Ripoll, and T. P. Spiller, “Gener-
ating and verifying graph states for fault-tolerant topological
measurement-based quantum computing in 2d optical lattices,”
arXiv e-print 1207.0253, July 2012.

[6] N. Kiesel, C. Schmid, U. Weber, O. Guehne, G. Toth, R. Ursin,
and H. Weinfurter, “Experimental analysis of a 4-qubit cluster
state,” arXiv e-print quant-ph/0508128, Aug. 2005. Phys. Rev.
Lett. 95, 210502 (2005).

[7] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter,
V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-
way quantum computing,” Nature, vol. 434, pp. 169–176, Mar.
2005.

[8] R. Jozsa, “An introduction to measurement based quantum com-
putation,” arXiv e-print quant-ph/0508124, Aug. 2005.

[9] R. Raussendorf and H. J. Briegel, “A one-way quantum com-
puter,” Physical Review Letters, vol. 86, pp. 5188–5191, May 2001.

[10] R. Raussendorf and H. J. Briegel, “Quantum computing via mea-
surements only,” arXiv e-print quant-ph/0010033, Oct. 2000.

[11] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide. Philadelphia, PA: Society
for Industrial and Applied Mathematics, third ed., 1999.

148

bibliography 149

[12] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008,
pp. 1–70, Aug. 2008.

[13] “Top500 list - june 2014 | TOP500 supercomputer sites.”

[14] J. Children, “Spin chains, hyper-fine spin interactions and mag-
netic spin coupling in quantum dots,” Master’s thesis, University
of York, York, May 2013.

[15] A. Hagar, “Quantum computing,” in The Stanford Encyclopedia of
Philosophy (E. N. Zalta, ed.), spring 2011 ed., 2011.

[16] M. A. Nielsen, “Cluster-state quantum computation,” Reports on
Mathematical Physics, vol. 57, pp. 147–161, Feb. 2006. arXiv: quant-
ph/0504097.

	Abstract
	Contents
	List of Figures
	Listings
	1 Introduction and Background
	1.1 Cluster States
	1.2 Measurement Based Quantum Computation

	2 One Way Quantum Computation
	2.1 Hamiltonian on interacting particles
	2.2 Two qubit cluster state
	2.3 Three qubit cluster state
	2.4 Quantum controlled Z operator
	2.5 Measurement based gate operation
	2.5.1 One bit teleportation
	2.5.2 Controlled not gate
	2.5.3 Gate universality

	3 Error Correction
	3.1 Logical qubits
	3.2 Logical operations
	3.2.1 Logical Z operation
	3.2.2 Logical X operation
	3.2.3 Logical Hadamard operation
	3.2.4 Logical rotation operation
	3.2.5 Logical controlled Z operation

	3.3 Entangled three qubit states
	3.3.1 Demonstration of the validity of simpler operations
	3.3.2 Second set of diagonal operations
	3.3.3 Final diagonals

	3.4 General Encoding
	3.5 Error
	3.6 Higher Complexities

	4 Simulation of One Way Quantum Computation
	4.1 Set-up
	4.1.1 Resources used
	4.1.2 Subroutines
	4.1.3 Libraries
	4.1.4 Precision

	4.2 CZ Operation
	4.2.1 Kronecker Product routine
	4.2.2 Improvements

	4.3 Other qubit operations
	4.3.1 Pauli Z Operation
	4.3.2 Hadamard Operation
	4.3.3 Logical Operations

	4.4 Measurement
	4.4.1 Random measurement in basis
	4.4.2 Pauli bases measurement
	4.4.3 Arbitrary measurement
	4.4.4 Feed Forward
	4.4.5 Multiple Outputs

	4.5 Decomposition
	4.5.1 Rank decomposition
	4.5.2 Single value decomposition

	4.6 Error
	4.6.1 Flip error
	4.6.2 Phase error

	4.7 Data Analysis
	4.7.1 Fidelity
	4.7.2 Bulk data

	4.8 Error Correction Scheme
	4.8.1 Encoding
	4.8.2 Correction

	4.9 Other structures
	4.9.1 Controlled not gate
	4.9.2 Controlled phase gate
	4.9.3 Quantum Fourier transform

	5 Conclusions
	5.1 Choice of resources
	5.2 Matrix Decomposition
	5.3 Further Work

	6 Additional Work
	6.1 Errata
	6.1.1 Basis measurement
	6.1.2 Normalisation
	6.1.3 Feed forward operators
	6.1.4 Measurement subroutine
	6.1.5 Numerical Value Precision

	6.2 Adjustments and Improvements
	6.2.1 Rearrangement of fidelity function
	6.2.2 Measurement subroutine
	6.2.3 Libraries
	6.2.4 Data format

	6.3 Program outputs
	6.4 Larger chain program
	6.4.1 Projection operators
	6.4.2 Outer product subroutine
	6.4.3 New measurement subroutine
	6.4.4 Retrieving output states

	6.5 Observations
	6.5.1 Subroutine improvements
	6.5.2 Timing and Scaling

	6.6 Conclusions

	A Appendix A: Code
	A.1 Single Chain Program
	A.2 CZ Operation Module
	A.3 Kronecker Product Module
	A.4 Measurement Module
	A.5 Fidelity Function

	B Appendix B: Resources Used
	B.1 Computer Used
	B.2 Compiler Settings

	C Appendix C: Additional Code
	C.1 Single Chain Program
	C.2 Projection operators program
	C.3 Kronecker Product Module
	C.4 Measurement Module
	C.5 Repeating single chain program
	C.6 Repeating projection operators program

	Bibliography

